Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Mai
Xem chi tiết
Đức Lộc
Xem chi tiết
Đinh Công Việt
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 15:12

\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)

Vậy (1) luôn đi qua A(-1;4)

tranthuylinh
Xem chi tiết
Khinh Yên
23 tháng 6 2021 lúc 22:07

Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :

-4 = (m-1) + m+3

<=> -4 = 2m + 2

<=> m =-3

Khinh Yên
23 tháng 6 2021 lúc 22:04

1) Đặt tên cho dễ giải nè:

(d1) : y= (m-1) x + m+ 3

(d2) : y = -2x + 1

(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1

<=> m = -1 và m \(\ne\)-2 

Ngô Bá Hùng
23 tháng 6 2021 lúc 22:10

1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),

\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)

2. để đi qua điểm (1;-4),

\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)

3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)

tọa độ điểm cố định là nghiệm của hpt

\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

đ cđịnh M(-1;4)

4. \(y=\left(m-1\right)x+m+3\)

+ Khi x=0, y=m+3

+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)

Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)

 

Vũ Bích Ngọc
Xem chi tiết
Hoàng Lê Bảo Ngọc
23 tháng 12 2016 lúc 19:23

Gọi điểm có định mà hàm số đó đi qua là \(N\left(x_0;y_0\right)\)

Ta có \(y_0=\left(m+2\right)x_0+m-1\Leftrightarrow m\left(x_0+1\right)+\left(2x_0-1-y_0\right)=0\)

Vậy để đths đi qua N với mọi m thì \(\hept{\begin{cases}x_0+1=0\\2x_0-y_0-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-3\end{cases}}\)

=> Điểm cố định mà hàm số luôn đi qua là \(N\left(-1;-3\right)\)

Vậy điểm cố định mà hàm số không đi qua chính là tập hợp các điểm có tọa độ khác điểm N.

Trần Quốc Đạt
23 tháng 12 2016 lúc 20:18

Bạn Hoàng Lê Bảo Ngọc, lời giải sai rồi.

"Tìm điểm cố định mà hàm số không đi qua với mọi \(m\)" là tìm điểm \(N\left(a,b\right)\) sao cho pt:

\(b=\left(m+2\right)a+m-1\)

là vô nghiệm.

Ta viết lại pt như sau: \(\left(a+1\right)m=b+1-2a\).

Pt sẽ vô nghiệm khi \(\hept{\begin{cases}a+1=0\\b+1-2a\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\b\ne-3\end{cases}}\).

Vậy mọi điểm có hoành độ là \(-1\) và tung độ khác \(-3\) đều thoả đề.

bí ẩn
Xem chi tiết
Cô Bé Bạch Dương
Xem chi tiết
Nguyen Thi Trinh
20 tháng 4 2017 lúc 20:53

1. Để đồ thị của hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1 thì:

\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)

Vậy để 2 đồ thị trên song song với nhau thì m=-1 và m\(\ne\)-2

2. Vì đồ thị đi qua điểm (1;-4) nên ta có:

-4=m-1+m+3

\(\Leftrightarrow\) 2m=-6

\(\Leftrightarrow m=-3\)

Vậy để đồ thị đi qua điểm (1;-4) thì m=-3

Nguyễn Minh Ngọc
29 tháng 9 2017 lúc 17:37

c

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 8 2019 lúc 5:44

Đáp án C

Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 22:32

Sửa đề: \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)

\(=x^2+mx^2+\left(-2m+2\right)x+m-3\)

\(=x^2+mx^2-2mx+2x+m-3\)

\(=m\left(x^2-2x+1\right)+x^2+2x-3\)

\(=m\left(x-1\right)^2+x^2+2x-3\)

Tọa độ điểm mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)