Phân tích đa thức thành nhân tử bằng cách cách phối hợp nhiều phương pháp
x2-7xy+10y2
5x2+6xy+y2
x2-5x-14
Phân tích các đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. a) 7x - 6x2-2
b)2x3+3x-5
c) 16x - 5x2-3
d) x3-x+3x2y+3xy2+y3-y
e) 5x2-10xy+5y2-20z2
Câu a trước đi ạ ^^
a) 7x - 6x2 - 2
= - 6x2 + 7x - 2
= (- 6x2 + 3x) + (4x - 2)
= 3x (- 2x + 1) + 2 (2x-1)
= - 3x ( 2x -1) + 2 (2x - 1)
= ( 2x -1 ) ( - 3x +2 )
Mấy bạn cho minh dạng bài về phân tích đa thức thành nhân tử bằng nhiều cách đc k
phân tích đa thức thành nhân tử bằng tất cả các cách có thể :
x2 + 5x + 4
x2 + 5x + 6
1 cách thoi:
x2+5x+4
= x2+x+4x+4
= x(x+1)+4(x+1)
= (x+1)(x+4)
x2+5x+6
= x2+2x+3x+6
= x(x+2)+3(x+2)
= (x+2)(x+3)
Phân tích các đa thức sau thành nhân tử bằng cách phối hợp nhiều phương pháp :
d) \(k\left(x\right)=27x^4-9x^3+14x^2-4\)
e) \(l\left(x\right)=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
f) \(m\left(x\right)=x^6+27\)
g) \(n\left(x\right)=x^4+3x^2+4\)
h) \(p\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
h)Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt\(x^2+7x+11=y\)
\(=>p\left(x\right)=\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay \(y=x^2+7x+11\) vào ta có : \(p\left(x\right)=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(f)m\left(x\right)=x^6+27=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)
e)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12=\left(x^2+x\right)\left(x^2+x-2\right)+6\left(x^2+x-12\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)=\left(x^2+x+6\right)\left(x^2-x+2x-2\right)=\left(x^2+x+6\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
B1: Phân tích đa thức thành nhân tử bằng phương pháp ( PTĐTTNTBPP ) nhóm hạng tử.
a) a2x + a2y - 7x - 7y
b) x3 + y(1-3x2) + x(3x2-1) - y3
c) 8xy3 - 5xyz - 24y2 + 15z
B2: PTĐTTNTBPP phối hợp nhiều phương pháp.
a) 5xy2 - 10xyz + 5xz2
b) x2y + xy2 - x - y
c) 25(x-y)2 - 16(x+y)2
a) Ta có : a2x + a2y - 7x - 7y
= a2(x + y) - (7x + 7y)
= a2(x + y) - 7(x + y)
= (x + y)(a2 - 7)
b) Ta có : x3 + y(1 - 3x2) + x(3x2 - 1) - y3
= x3 - y(3x2 - 1) + x(3x2 - 1) - y3
= x3 - y3 + [x(3x2 - 1) - y(3x2 - 1)]
= x3 - y3 - (3x2 - 1)(x - y)
= (x - y)(x2 + xy + y2) - (3x2 - 1)(x - y)
= (x - y)[(x2 + xy + y2) - (3x2 - 1)]
= (x - y)(x2 + xy + y2 - 3x2 + 1)
= (x - y)(-2x2 + xy + y2 + 1)
bài 2:a. \(5x.\left(y^2-2yz+z^2\right)\)
\(=5x.\left(y-z\right)^2\) .......k bít dc chưa
b.\(\left(x^2y-x\right)+\left(xy^2-y\right)\)
\(=x.\left(xy-1\right)+y.\left(xy-1\right)\)
\(=\left(xy-1\right).\left(x+y\right)\)
phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử (6.x+3) - (2.x-5) . (2.x+1)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt
x^8+x+1
Bạn nào bt giải hộ mk nha
Ta có : x8 + x + 1
= x8 + x7 - x7 - x6 + x6 + x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 - x - 1 + x + 1 + x + 1
= (x8 + x7) - (x7 + x6) + (x6 + x5) - (x5 + x4) + (x4 + x3) - (x3 + x2) + (x2 + x) + (x + 1)
= x7(x + 1) - x6(x + 1) + x5(x + 1) - x4(x + 1) + x3(x + 1) - x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x7 - x6 + x5 - x4 + x3 - x2 + x + 1)
(mk ko chắc lắm)
Phân tích đa thức thành nhân tử :
x^3-2x^2-19x+20
Dùng HĐT hiệu 2
bình phương . Nếu ko dùng đc HĐT thì làm cách khác cũng đc
\(x^3-2x^2-19x+20\)
\(=x^3+3x^2-4x-5x^2-15x+20\)
\(=\left(x^3+3x^2-4x\right)-\left(5x^2+15x-20\right)\)
\(=x\left(x^2+3x-4\right)-5\left(x^2+3x-4\right)\)
\(=\left(x^2+3x-4\right)\left(x-5\right)\)
\(=\left(x^2+4x-x-4\right)\left(x-4\right)\)
\(=\left[x\left(x+4\right)-\left(x+4\right)\right]\left(x-5\right)\)
\(=\left(x+4\right)\left(x-5\right)\left(x-1\right)\)
x^3-2x^2-19x+20
=x^3-5x^2+3x^2-15x-4x+20
=(x-5)(x^2+3x-4)
=(x+4)(x-1)(x-5)
Có: x3 - 2x2 - 19x + 20
=> x3 - 2x2 + x - 20x + 20
=> x(x2 - 2x + 1) - 20(x - 1)
=> x(x - 1)2 - 20(x - 1)
=> (x - 1)[x(x - 1) - 20]
=> (x - 1)(x2 - x - 20)
=> (x - 1)(x2 - 5x + 4x - 20)
=> (x - 1)[x(x - 5) + 4(x - 5)]
=> (x - 1)(x + 4)(x - 5)
Phân tích đa thức thành nhân tử : (x2 + 5x – 3)(x2 + 5x – 5) – 15
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15=\left(x^2+5x-3\right)\left(x^2+5x-3-2\right)-15=\left(x^2+5x-3\right)^2-2\left(x^2+5x-3\right)+1-16=\left(x^2+5x-3-1\right)^2-4^2=\left(x^2+5x-4\right)^2-4^2=\left(x^2+5x-8\right)\left(x^2+5x\right)=x\left(x+5\right)\left(x^2+5x-8\right)\)
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15\)
\(=\left(x^2+5x\right)^2-8\left(x^2+5x\right)-15\)
\(=x\left(x+5\right)\left(x^2+5x-8\right)\)