Giải phương trình
\(\frac{\sqrt{3x}-3}{3+\sqrt{3x}}=\frac{-1}{5}\)
Giải phương trình
\(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5=\frac{1}{2}\sqrt{3x}\)
Ta có : \(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5=\frac{1}{2}\sqrt{3x}\)
\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-5-\frac{1}{2}\sqrt{3x}=0\)
\(\Rightarrow\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)
\(\Rightarrow\sqrt{3x}\left(\frac{3}{2}-1-\frac{1}{2}\right)=5\)
\(\Rightarrow\sqrt{3x}.0=5\)
Vậy bất phương trình
\(\frac{3}{2}\sqrt{3x}-\sqrt{3x}-\frac{1}{2}\sqrt{3x}=5\)
\(0\sqrt{3x}=5\)(vô lý)
vậy pt vô nghiệm
Giải phương trình:
\(9+\sqrt{5}x^3+5x+\frac{\sqrt{5}}{x^3}=3\sqrt{5}x^2+3x+\frac{3\sqrt{5}-1}{x}+\frac{3}{x^2}\)
GIẢI PHƯƠNG TRÌNH:
\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}
Đặt \(\hept{\begin{cases}a=\sqrt{4x+1}\\b=\sqrt{3x-2}\end{cases}\ge}0\) thì có:
\(\Rightarrow a^2-b^2=x+3\)\(\Rightarrow a-b=\frac{a^2-b^2}{5}\)
\(\Rightarrow a-b-\frac{\left(a-b\right)\left(a+b\right)}{5}=0\)
\(\Rightarrow\left(a-b\right)\left(1-\frac{a+b}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=b\\a+b=5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{4x+1}=\sqrt{3x-2}\\\sqrt{4x+1}+\sqrt{3x-2}=5\end{cases}}\)\(\Rightarrow x=2\)
Giải phương trình : \(10+\sqrt{3x^2}+3x+\frac{\sqrt{3}}{x^3}=5\sqrt{3x^2}+2x+\frac{2\sqrt{3}-1}{x}+\frac{5}{x^2}\)
Giải phương trình: \(x^2+3x.\sqrt[3]{3x+2}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
ĐKXĐ: z>0
pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)
<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)
<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)
<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)
<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)
<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)
<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)
vậy x=2
Câu 1: Giải phương trình
\(\sqrt{5x^3+3x^2+3x-2}+\frac{1}{2}=\frac{x^2}{2}+3x\)
Câu 2: Chứng minh
\(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}< \frac{1}{3}\)
giải phương trình:\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
Giải phương trình
\(x^2+3x\sqrt[3]{3x+2}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
Giải phương trình: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(DK:x\ge\frac{2}{3}\)
\(\Leftrightarrow5\left(\sqrt{4x+1}-3\right)-5\left(\sqrt{3x-2}-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\frac{20\left(x-2\right)}{\sqrt{4x+1}+3}-\frac{15\left(x-2\right)}{\sqrt{3x-2}+2}-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1=0\end{cases}}\)
Vi \(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1< 0\left(\forall x\ge\frac{2}{3}\right)\)
Vay nghiem cua PT la \(x=2\)
Chứng minh : A = 5 + 5 mũ 2 + 5 mũ 3 + . . . + 5 mũ 9+ 5 mũ 10 chia hết cho 6 giúp mk với nha