2. Cho parabol (P): y= ax + bx+c với a
1. Parabol y = ax^2 + bx +C.đi qua A(8;0) và có đỉnh A(6;-12) có phương trình là?
2. Parabol y = ax^2 + bx +C đạ cực tiểu bằng 4 tại x =-2 và đi qua A(0;6) có pt là?
3. Parabol y = ax^2 + bx +C đi qua A(0;-1) , B(1;-1) , C( -1;1) có pt là?
4. Cho M €(P) : y = x^2 và A(2;0). Để AM ngắn nhất thì?
\(a\ne0\)
a/ \(\left\{{}\begin{matrix}64a+8b+c=0\\-\frac{b}{2a}=6\\\frac{4ac-b^2}{4a}=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-12a\\4ac-b^2+48a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=32a\\b=-12a\\4a.\left(32a\right)-\left(-12a\right)^2+48a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-36\\c=96\end{matrix}\right.\)
\(\Rightarrow y=3x^2-36x+96\)
b/ \(\left\{{}\begin{matrix}c=6\\-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}c=6\\b=4a\\24a-16a^2=16a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
Cho parabol y=ax^2 +bx +3
Xác định parabol ,biết rằng parabol đó đi qua A(-1,8) và B(0,3)
Câu 1 . Cho biết parabol \(y=ax^2+bx+c\) có đỉnh I (-1;-4) và cắt trực tung tại điểm có tung đọ =1. tìm a+b+c
Câu 2 . Cho biết parabol \(y=ax^2+bx+c\) có đỉnh I (-1;-4). Tìm giá trị nhỏ nhất của biểu thức \(M=a^2+b^2+10c\)
Câu 3 . Cho biết parabol \(y=ax^2+bx+c\) cắt trục hoành tại điểm có hoành độ lần lượt là -2; 1. Tìm GTLN của biểu thức\(M=a^2+\left(b+1\right)^2-\left(c-1\right)^2\)
Giúp tớ nha
vì có ít time nên mk hướng dẩn thôi nha .
câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)
và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)
từ (1) và (2) ta có hệ : \(\Rightarrow a;b;c\)
câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)
thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .
câu 3 : tương tự câu 2 thôi nha
từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................
4. Hàm số nào sau đây nghịch biến trong khoảng ( âm vô cùng; 0)
A. y = √2 . x^2 +1
B. y = -√2 . x^2 +1
C. y = √2(x +1)^2
D. -√2 (x +1)^2.
5. Parabol y = ax^2 + bx +2 đi qua hai điểm M(1;5) và N(-2;8) có phương trình?
6. Parabol y = ax^2 + bx +c đạt cực tiểu bằng 4 tại x =-2 và đi qua A(0;6) có phương trình?
7. Parabol y = ax^2 + bx +c đi qua A(0;-1), B( 1;-1) , C(-1;1) có pt là?
8. Cho M € (P) : y= x^2 và A (2;0) . Để AM ngắn nhất thì
A. M( 1;1)
B. M( -1;1)
C. M(1;-1)
D. (-1;-1)
4A
5. \(\left\{{}\begin{matrix}a+b+2=5\\4a-2b+2=8\end{matrix}\right.\) \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow y=2x^2+x+2\)
6. \(\left\{{}\begin{matrix}-\frac{b}{2a}=-2\\\frac{4ac-b^2}{4a}=4\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4a\\24a-16a^2=16a\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=2\\c=6\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+2x+6\)
7. \(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) \(\Rightarrow y=x^2-x-1\)
8.
a/ \(AM=\sqrt{2}\)
b/ \(AM=\sqrt{10}\)
c/ Không thuộc đồ thị
d/ Không thuộc đồ thị
Đáp án A đúng
tìm parabol y=ax^2-bx+c có đỉnh I(1,5) và đi qua điểm A(4,-3)
Parabol qua A(4;-3) và đỉnh I(1;5) ta có :
-3 = 16a - 4b + c
5 = a - b + c
\(-\dfrac{\left(-b\right)}{2a}=1\Leftrightarrow b-2a=0\)
Giải hệ trên ta có : \(a=-\dfrac{8}{9};b=-\dfrac{16}{9};c=\dfrac{37}{9}\)
tìm parabol (P) y= ax^2+bx+c, biết rằng P đi qua 3 điểm A (1;-1), B(2;3), C(-1;-3)
Do (P) qua A;B;C, thay tọa độ A, B, C vào pt (P) ta được:
\(\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=3\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-3\end{matrix}\right.\)
\(\Rightarrow\left(P\right):\) \(y=x^2+x-3\)
Xác định parabol y= ax2 + bx + c, (a#0), biết rằng đỉnh của parabol đó có tung độ bằng -25, đồng thời parabol đó cắt trục hoành tại hai điểm A(-4;0) và B(6;0).
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
1. Parabol (P) : y =ax^2 +bx +c đạt cực tiểu bằng 4 tại x=-2 và đi qua A(0;6) có pt là?
2. Parabol y = m^2.x^2 và đg thẳng y = -4x -1 cắt nhau tại hai điểm phân biệt với giá trị của m bằng?