Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thiên Hương
Xem chi tiết

a:Sửa đề: \(10^{n}+18n-1\) chia hết cho 27

Đặt \(A=10^{n}+18n-1\)

\(=\left(10^{n}-1\right)+18n=99\ldots9+18n\) (n chữ số 9)

=9(11...1+2n)⋮9

11..1+2n=n+2n=3n⋮3

=>A⋮9*3

=>A⋮27

b: Sửa đề: \(10^{n}+72n-1\)

Đặt \(B=10^{n}+72n-1\)

\(=\left(10^{n}-1\right)+72n\)

=99...9+72n(n chữ 9)

=9(11...1+8n)

11...1+8n=n+8n=9n⋮9

=>B⋮9*9

=>B⋮81

Đặng Nguyễn Thảo My
Xem chi tiết
Hoàng Hạnh Nguyễn
14 tháng 7 2021 lúc 9:23

tách bài ra nha b

Cao Thị Ánh
Xem chi tiết
Lanh Nguyen
Xem chi tiết
nguyễn thị hương giang
19 tháng 12 2022 lúc 20:06

Bài 6.

a)Công suất ấm: \(P=\dfrac{A}{t}=\dfrac{900\cdot1000}{10\cdot60}=1500W\)

Dòng điện qua ấm: \(I=\dfrac{P}{U}=\dfrac{1500}{220}=\dfrac{75}{11}A\)

Điện trở dây nung: \(R=\dfrac{U}{I}=\dfrac{220}{\dfrac{75}{11}}=\dfrac{484}{15}\Omega\)

b)Điện năng tiêu thụ trong 1 tháng (30 ngày):

\(T=900\cdot1000\cdot30\cdot3600=9,72\cdot10^{10}J=27000kWh\)

Tiền điện phải trả: \(T=27000\cdot1500=40500\left(k.đồng\right)\)

c)Công suất tiêu thụ thực: 

\(P=UI=\dfrac{U^2}{R}=\dfrac{110^2}{\dfrac{484}{15}}=375W\)

nguyễn thị hương giang
19 tháng 12 2022 lúc 20:15

Bài 7.

CTM: \(\left(Đ_1ntR_b\right)//Đ_2\)

\(R_1=\dfrac{U_{Đ1}^2}{P_{Đ1}}=\dfrac{10^2}{2}=50\Omega;I_{Đ1đm}=\dfrac{P_{Đ1}}{U_{Đ1}}=\dfrac{2}{10}=0,2A\)

\(R_2=\dfrac{U^2_{Đ2}}{P_{Đ2}}=\dfrac{12^2}{3}=48\Omega;I_{Đ2đm}=\dfrac{P_{Đ2}}{U_{Đ2}}=\dfrac{3}{12}=0,25A\)

Để đèn 1 sáng bình thường \(\Rightarrow I_b=I_{Đ1đm}=0,2A\)

\(R_{Đ1+b}=\dfrac{12}{0,2}=60\Omega\)

\(R_b=60-R_{Đ1}=60-50=10\Omega\)

Thu vân
Xem chi tiết
Hương Vy
9 tháng 11 2021 lúc 17:13

undefined

Bạn tham khảo, có j sai thì báo lại mình nhé

2TQEFSCF32
Xem chi tiết
Phong
28 tháng 10 2023 lúc 8:01

Bài 2: 

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{59}\right)\) ⋮ 3

Vậy: A ⋮ 3

_____________

\(A=2+2^2+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)

\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)

\(A=7\cdot\left(2+2^4+....+2^{58}\right)\) ⋮ 7

Vậy: A ⋮ 7

___________________

\(A=2+2^2+...+2^{60}\)

\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)

\(A=2\cdot5+2^2\cdot5+...+2^{58}\cdot5\)

\(A=5\cdot\left(2+2^2+...+2^{58}\right)\) ⋮ 5

Vậy: A ⋮ 5 

Trần Thanh Di
Xem chi tiết
Lê Nhật Khôi
16 tháng 2 2019 lúc 21:45

Ta có:

\(9\cdot10^n+18\)

\(=9\left(10^n+2\right)\)

Ta có: \(10\equiv1\)(mod 3)

Do đó: \(9\cdot10^n+18=9\left(10^n+2\right)\equiv9\cdot\left(1+2\right)=27\)(mod 3)

Suy ra: \(9\cdot10^n+18\equiv0\)(mod 27)

Vậy..........

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2017 lúc 5:39

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Chứng  minh   J = 10 n + 18 n − 1  chia hết cho 9.

Bước 2. Chứng minh  J = 10 n + 18 n − 1  chia hết cho 3.

Ta có:

J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n  

=> J chia hết cho 9.

+) Chứng minh  11...1 + 2 n ⋮ 3 .

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n .

Suy ra 11...1 và n có cùng số dư trong phép chia cho 3.

=> 11...1-n chia hết cho 3.

=> (11...1+2n) ⋮ 3

⇒ J ⋮ 27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 11 2018 lúc 17:34