tìm các cạnh và các góc của tam giác ABC biết AB =21cm góc B=42 độ góc C=56 độ
Tính các góc và các cạnh còn lại của tam giác ABC vuông tại A , biết :
a. AC = 10cm , góc C = 30 độ
b. BC = 20cm , góc B = 40 độ
c. AB = 21cm , AC = 18cm
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
mọi người cứu em với
Cho tam giác ABC vuông tại A. Giải tam giác ABC biết AB= 21cm, góc C =42 độ
\(\widehat{B}=48^0\)
\(BC\simeq31,38\left(cm\right)\)
Tính các góc và các cạnh còn lại của tam giác ABC vuông tại A , biết :
a. BC = 20cm , góc B = 40 độ
b. AB = 21cm , AC = 18cm
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=50^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin\widehat{C}\)
\(\Leftrightarrow AB=20\cdot\sin50^0\)
hay \(AB\simeq15,32\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)
hay \(AC\simeq12,86\left(cm\right)\)
2. Cho tam giác ABC có AB=25cm, góc B = 70 độ, góc C=50 độ. Tính BC.
3. Cho tam giác ABC có góc B = 60 độ. Các hình chiếu vuông góc của AB và AC lên BC theo thứ tự bằng 12 cm và 18 cm. Tính các cạnh, các góc và đường cao của tam giác ABC.
cảm ơn các bạn trước
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
Cho tam giác ABC vuông tại A. Tính các cạnh và các góc trong tam giác ABC, biết:
a) AB=5cm, AC=10cm, góc C=30 độ
b) AB=10cm, góc B=60 độ, góc C=45 độ
Đề sai hết ở cả hai câu rồi bạn
cho tam giác ABC có AB = 12 cm ,AC = 13 cm , BC = 15 cm so sánh các góc của tam giác ABC
cho tam giác ABC có góc A bằng 50 độ góc B bằng 60 độ. Tính góc C và so sánh các cạnh của tam giác ABC
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
bài 4: cho tam giác ABC vuông tại A . Biết AB= 3cm; góc B = 40 độ . hãy tính các cạnh và các góc của tam giác ABC
góc C=90-40=50 độ
Xét ΔABC vuông tại A có
sin C=AB/BC
=>3/BC=sin50
=>\(BC\simeq3:sin50=3,92\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq2,52\left(cm\right)\)
Cho tam giác ABC=tam giác DEG
a. Biết góc A=20 độ; góc C=60 độ; góc E=100 độ.
Tìm các góc còn lại của mỗi tam giác.
b. Cho DG=5cm. Tìm được cạnh nào của tam giác ABC.
A)Tam giác ABC = tam giác DEG ta có:
=>A =D = 20 độ ( 2 góc tương ứng)
=> C = G = 60 độ
=> E = B = 100 độ
B) DG = AC =5cm
a ) Do \(\Delta ABC=\Delta DEG\)\(\Rightarrow\widehat{A}=\widehat{D}\) ; \(\widehat{B}=\widehat{E}\) ; \(\widehat{C}=\widehat{G}\)
Vì \(\widehat{B}=\widehat{E}\)mà \(\widehat{E}=100^o\Rightarrow\widehat{B}=100^o\)
Vậy \(\Delta ABC\)có \(\widehat{A}=20^o;\widehat{B}=100^o;\widehat{C}=60^o\)
Vì \(\widehat{C}=\widehat{G}\) mà \(\widehat{C}=60^o\Rightarrow\widehat{G}=60^o\)
\(\widehat{A}=\widehat{D}\) mà \(\widehat{A}=20^o\Rightarrow\widehat{D}=20^o\)
Vậy \(\Delta DEG\) có \(\widehat{D}=20^o;\widehat{E}=100^o;\widehat{G}=60^o\)
b ) Do \(\Delta ABC=\Delta DEG\Rightarrow AB=DE\); \(BC=EG\); \(AC=DG\)
mà DG = 5cm => AC = DG = 5cm
Vậy \(\Delta ABC\) có AC = 5cm