Cho phân thức A = \(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)};\left(x\ne5;x\ne-5\right)\)
a, Rút gọn A
B, Cho A = -3. Tính giá trị biểu thức \(9x^2-42x+49\)
cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
a.rút gọn A
b.tìm x để A=4
a, Rút gọn :
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{1\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{x-5+2x+10-2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{x+15}{\left(x+5\right)\left(x-5\right)}\)
3 phút trước (13:18)
Kb đi buồn quá
Toán lớp 1Cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
a.Rút gọn A
b.Cho A=-3.. Tính giá trị của biểu thức 9x2-4x+49
Cho phân thức:
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\) (x #+-5)
a, rút gọn A
b, Cho A= -3. tính giá trị của biểu thức \(9x^2-42x+49\)
Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Cho biểu thức
A=\(\left[\frac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\frac{2x^2-x-10}{2\left(x^3-x^2+x-1\right)}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x+1\right)}\right]\)
bài 5: cho biểu thức A=\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a. Tìm điều kiện của biến x để giá trị của biểu thức A được xác định ?
b. Tìm giá trị của x để A=1;A=-3
bài 6:cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\left(x\ne5;x\ne-5\right)\)
a. Rút gọn A
b. cho A=-3. Tính giá trị của biểu thức 9x2-42x+49
Bài 2 :
a, Ta có : \(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
=> \(A=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
=> \(A=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x-5\right)\left(x+5\right)}\)
=> \(A=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)
b, - Thay A = -3 ta được phương trình \(\frac{1}{x+5}=-3\)
=> \(-3\left(x+5\right)=1\)
=> \(-3x-15=1\)
=> \(-3x=16\)
=> \(x=-\frac{16}{3}\)
- Thay x = \(-\frac{16}{3}\)vào phương trình trên ta được :
\(9.\left(-\frac{16}{3}\right)^2-42.\left(-\frac{16}{3}\right)+49=529\)
Rút gọn phân thức :
a) \(P=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
b) \(Q=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
P/s : Típ nè :v
a) \(P=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right).\frac{x^2+2x+1}{2x+1}\)
\(=\left(\frac{1}{x-1}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)
\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)
\(=\frac{1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)
\(=\frac{x+1}{\left(x-1\right)\left(2x+1\right)}\)
b) \(Q=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{5x-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3-x^2+5x^2-5x}{2x\left(x+5\right)}\)
\(=\frac{x^2\left(x-1\right)+5x\left(x-1\right)}{2x\left(x+5\right)}\)
\(=\frac{\left(x-1\right)\left(x^2+5x\right)}{2x\left(x+5\right)}\)
\(=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x-1}{2}\)
xin lỗi phần a làm sai mình làm lại
1. Tìm x ϵ Q sao cho:
a) (2x-3). (x+1) < 0.
b) \(\left(x-\frac{1}{2}\right).\left(x+3\right)\)> 0.
2. Tính:
S=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)
3. Tìm x: Biết x không thuộc{-2; -5; -10; -17}
\(\frac{3}{\left(x+2\right).\left(x+5\right)}+\frac{5}{\left(x+5\right).\left(x+10\right)}+\frac{7}{\left(x+10\right).\left(x+17\right)}=\frac{x}{\left(x+2\right).\left(x+17\right)}\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
1. Tìm x ϵ Q sao cho:
a) (2x-3). (x+1) < 0.
b) \(\left(x-\frac{1}{2}\right).\left(x+3\right)>0\)
2.Tính:
S=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)
3.Tìm x: Biết x không thuộc{-2; -5; -10; -17}
\(\frac{3}{\left(x+2\right).\left(x+5\right)}+\frac{5}{\left(x+5\right).\left(x+10\right)}+\frac{7}{\left(x+10\right).\left(x+17\right)}=\frac{x}{\left(x+2\right).\left(x+17\right)}\)
tự làm nhé. bài cô Kiều cho dễ mừ :)