tìm số chính phương có 4 chữ số biết số đó chia hết cho 147
1,
a, Tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
b, Tìm số chính phương có 3 chữ số chia hết cho 56
c, Tìm số chính phương có 4 chữ số chia hết cho 33
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
tìm n thuộc N có 4 chữ số biết n là số chính phương và n chia hết cho 147
\(147⋮3\Rightarrow n⋮3\)
Mà n chính phương \(\Rightarrow n⋮9\)
\(\Rightarrow n⋮441\)
\(\Rightarrow n=441.k^2\)
Do n có 4 chữ số \(\Rightarrow1000\le n\le9999\)
\(\Rightarrow1000\le441.k^2\le9999\)
\(\Rightarrow1< k< 5\) \(\Rightarrow k=\left\{2;3;4\right\}\)
\(\Rightarrow n=\left\{1764;3969;7056\right\}\)
Tìm số chính phương có bốn chữ số, số đó chia hết cho 147, và chữ số tận cùng là 9.
tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 (k là số tự nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa mãn, vậy X= 147*24 = 3969 = 63^2.
chúng minh rằng 27 chữ số viết thành 1 số mà các chữ số giống nhàu thì sẽ chia hết cho 27
tìm số tự nhiên n {mk đặt là n nha] có 4 chữ số biết n là số chính phương và là bôi của 147
tìm số chính phương có 3 chữ số biết số đó chia hết cho 56
Gọi số thỏa mãn đề bài là \(x\) ( 100 ≤ \(x\) ≤ 999)
⇒ \(x\) ⋮ 56 (1)
⇒ \(x\) ⋮ 7
⇒ \(x\) ⋮ 72 ( một số chính phương chia hết cho một số nguyên tố thì sẽ chia hết cho bình phương của số nguyên tố đó.)
⇒ \(x\) ⋮ 49 (2)
Kết hợp (1) và (2) ta có: \(x\) \(\in\) BC(49; 56)
56 = 7 \(\times\) 23
49 = 72
BCNN(49;56) = 23 \(\times\) 72 = 392
⇒ \(x\) \(\in\) {0; 392; 784; 1176; ....}
784 = 282 < 999 ( thỏa mãn)
182 < 392 < 192 vậy 392 không phải là số chính phương loại
Vậy \(x\) = 784
Kết luận: Số chính phương có 3 chữ số chia hết cho 56 là: 784
Tìm số tự nhiên có 4 chữ số. Biết số đó là 1 số chính phương chia hết cho 9 và chữ số tận cùng của số đó là số nguyên tố
Bài 1: Tìm n có 2 chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương
Bài 2: Tìm số chính phương n có 3 chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không thay đổi
Bài 3: Tìm số tự nhiên n (n>0) sao cho tổng 1! + 2! + ... + n! là một số chính phương
Bài 4: Tìm các chữ số a và b sao cho: \(\overline{aabb}\)là số chính phương
Bài 5: CMR: Tổng bình phương của 2 số lẻ bất kì không phải là một số chính phương
Bài 6: Một số gồm 4 chữ số, khi đọc ngược lại thì không đổi và chia hết cho 5, Số đó có thể là số chính phương hay không?
Bài 7: Tìm số chính phương có 4 chữ sô chia hết cho 33
CÁC BẠN GIÚP MÌNH NHÉ! THANKS
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
chịu thôi
...............................
tìm số chính phương có 3 chữ số biết số đó chia hết cho 56
Gọi số cần tìm là x (x thuộc N; 99 < x < 1000)
Ta có: x = 56.k = y2 (x ϵN*)
=> x = 23.7.k = y2
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mủ lẻ, không chứa các thừa số nguyên tố với số mũ chẵn nên để 23.7.k là số chính phương thì k = 2.7.m2 (m ϵ N*) = 14.m2
Vì 99 < x < 1000 nên 99 < 56.k < 1000
=> 1 < k < 18
=> 1 < 14.m2 < 18
=> 0 < m2 < 2
Mà m2 là số chính phương nên m2 = 1 => m = 1
=> k = 14.1 = 14
=> x = 14.56 = 784
Vậy số cần tìm là 784