Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MiiJinn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 19:27

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc 1 đường tròn

b: Vì \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên B,E,D,C cùng thuộc đường tròn đường kính BC

tâm là trung điểm I của BC

bán kính là BC/2

c: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC(1)

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI\(\perp\)BC(2)

Từ (1),(2) suy ra A,H,I thẳng hàng

ΔABC đều

mà BD,CE là các đường cao

nên BD,CE là các đường trung tuyến

=>D,E lần lượt là trung điểm của AC,AB

Xét ΔABC có

BD,CE là các đường trung tuyến

BD cắt CE tại H

Do đó; H là trọng tâm của ΔABC

mà I là trung điểm của BC

nên \(AH=\dfrac{2}{3}AI\) và \(IH=\dfrac{1}{3}IA\)

ΔAIB vuông tại I

=>\(AB^2=AI^2+IB^2\)

=>\(AI^2=2^2-1^2=3\)

=>\(AI=\sqrt{3}\left(cm\right)\)

\(HI=\dfrac{1}{3}HA=\dfrac{1}{3}\sqrt{3}< \dfrac{1}{3}\cdot3=IB=R\)

=>H nằm trong (I)

\(IA=\sqrt{3}>1=IB=R\)

=>A nằm ngoài (I)

 

Miền Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 21:06

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

Tâm là trung điểm của BC

Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)

phong họ nguyễn
Xem chi tiết
tíntiếnngân
10 tháng 11 2019 lúc 12:49

- có \(\Delta BDC\)vuông tại D

nên D thuộc đường tròn đường kính BC ( 1)

có \(\Delta BEC\)vuông tại E

nên E thuộc đường tròn đường kính BC (2)

từ (1) và (2) suy ra đpcm

- gọi O là trung điểm của BC

có AO vuông góc với BC

dễ thấy OE > OH

nên H nằm trong đường tròn đường kính BC

dễ cm OA > OB

ên A nằm ngoài đường tròn đường kính BC

Khách vãng lai đã xóa
Cô Hoàng Huyền
Xem chi tiết
Vũ Phương Dung
20 tháng 3 2021 lúc 15:12

ummmms

Khách vãng lai đã xóa
Nhật Nam
22 tháng 8 2021 lúc 16:29

a) Ta thấy tam giác AEH và ADH đều là các tam giác vuông chung cạnh huyền AH nên AEHD nội tiếp đường tròn đường kính AH.
b)  Gọi O là trung điểm của AH và K là giao điểm của AH với BC. Do H là trực tâm nên ta có ngay AK là đường cao của tam giác ABC.

Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông ta có:
^OEH=^OHE=^KHC^MEC=^MCE.
mà ^KHC+^MCE=90o.
Suy ra: ^OEH+^MEC=90o nên OEEM hay ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHD.

Khách vãng lai đã xóa
Phương Vy
22 tháng 8 2021 lúc 20:51

a) Ta thấy tam giác AEH và ADH đều là các tam giác vuông chung cạnh huyền AH nên AEHD nội tiếp đường tròn đường kính AH.
b)  Gọi O là trung điểm của AH và K là giao điểm của AH với BC. Do H là trực tâm nên ta có ngay AK là đường cao của tam giác ABC.

Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông ta có:
\widehat{OEH}=\widehat{OHE}=\widehat{KHC}\widehat{MEC}=\widehat{MCE}.
mà \widehat{KHC}+\widehat{MCE}=90^o.
Suy ra: \widehat{OEH}+\widehat{MEC}=90^o nên OE\perp EM hay ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHD.

Khách vãng lai đã xóa
Thạch Tít
Xem chi tiết
Trần Trang
Xem chi tiết
Lê Vĩnh đức
25 tháng 10 2021 lúc 17:56

 

Giải thích các bước giải:

a. Gọi OO là trung điểm AHAH

Xét tam giác AEHAEH vuông tại HH: OO là trung điểm AH⇒AO=OH=OEAH⇒AO=OH=OE

Chứng minh tương tự ⇒AO=OH=OD⇒AO=OH=OD

⇒OA=OH=OD=OE⇒OA=OH=OD=OE

Vậy A,D,H,E∈(O)A,D,H,E∈(O) với OO là trung điểm AHAH

b. Có: BD∪CE=H⇒HBD∪CE=H⇒H là trực tâm tam giác ABCABC

⇒AH⊥BC⇒AH⊥BC

Mà: CE⊥ABCE⊥AB

⇒ˆEAH=ˆECB(1)⇒EAH^=ECB^(1) (hai góc có cạnh tương ứng vuông góc)

Có: OA=OE⇒OA=OE⇒ tam giác AOEAOE cân tại OO

⇒ˆAEO=ˆEAO(2)⇒AEO^=EAO^(2)

Chứng minh tương tự ⇒⇒ tam giác EMCEMC cân tại MM

⇒ˆECM=ˆCEM(3)⇒ECM^=CEM^(3)

(1);(2);(3)⇒ˆAEO=ˆCEM(1);(2);(3)⇒AEO^=CEM^

Mà: ˆAEO+ˆOEC=ˆAEC=90∘AEO^+OEC^=AEC^=90∘

⇒ˆOEC+ˆCEM=ˆOEM=90∘⇒OEC^+CEM^=OEM^=90∘

⇒EM⇒EM là tiếp tuyển của (O)(O) 

Lê Vĩnh đức
25 tháng 10 2021 lúc 17:58

undefined

Vũ Bùi Trung Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 17:45

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2019 lúc 6:04

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 12 2017 lúc 5:52

a, Gọi O là trung điểm của AH thì OE = OA = OH = OD

b, HS tự làm