Giải thích các bước giải:
a. Gọi OO là trung điểm AHAH
Xét tam giác AEHAEH vuông tại HH: OO là trung điểm AH⇒AO=OH=OEAH⇒AO=OH=OE
Chứng minh tương tự ⇒AO=OH=OD⇒AO=OH=OD
⇒OA=OH=OD=OE⇒OA=OH=OD=OE
Vậy A,D,H,E∈(O)A,D,H,E∈(O) với OO là trung điểm AHAH
b. Có: BD∪CE=H⇒HBD∪CE=H⇒H là trực tâm tam giác ABCABC
⇒AH⊥BC⇒AH⊥BC
Mà: CE⊥ABCE⊥AB
⇒ˆEAH=ˆECB(1)⇒EAH^=ECB^(1) (hai góc có cạnh tương ứng vuông góc)
Có: OA=OE⇒OA=OE⇒ tam giác AOEAOE cân tại OO
⇒ˆAEO=ˆEAO(2)⇒AEO^=EAO^(2)
Chứng minh tương tự ⇒⇒ tam giác EMCEMC cân tại MM
⇒ˆECM=ˆCEM(3)⇒ECM^=CEM^(3)
(1);(2);(3)⇒ˆAEO=ˆCEM(1);(2);(3)⇒AEO^=CEM^
Mà: ˆAEO+ˆOEC=ˆAEC=90∘AEO^+OEC^=AEC^=90∘
⇒ˆOEC+ˆCEM=ˆOEM=90∘⇒OEC^+CEM^=OEM^=90∘
⇒EM⇒EM là tiếp tuyển của (O)(O)