Cho hai đường tròn (O) đường kính AB. Vẽ dây AC tùy ý và hai tiếp tuyến của đường tròn tại B và C. Hai tiếp tuyến này cắt nhau tại P. Chứng minh OP//AC.
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm (O). Từ B và C vẽ hai tiếp tuyến của đường tròn, hai tiếp tuyến này cắt nhau ở D. Qua D vẽ một cát tuyến sonng song với AB, cát tuyến này cắt đường tròn tại các điểm M và N và cắt cạnh AC tai I
a) Chứng minh tứ giác OBDC nội tiếp đường tròn (O)
b) Chứng minh I là trung điểm của dây MN
Cho đường tròn (O) và đường thẳng xy tiếp xúc với đường tròn tại A. Vẽ đường tròn (I) đường kính OA.
a) Chứng minh rằng hai đường tròn (O) và (I) tiếp xúc với nhau
b) Vẽ dây cung AC của (O) cắt I tại một điểm thứ hai là M. Chứng minh MA=MC
c) đường thẳng OM cắt xy tại B. Chứng minh rằng BC là tiếp tuyến của (O)
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
Cho đường tròn tâm O đường kính AB. Từ A và B vẽ hai dây cung AC và BD của đường tròn (O) cắt nhau tại N bên trong đường tròn (C,D nằm trên cùng nửa mặt phẳng bờ AB). Hai tiếp tuyến Cx, Dy của đường tròn (O) cắt nhau tại M. Gọi P là giao điểm của hai đường thẳng AD và BC
1. Chứng minh tứ giác DNCP nội tiếp đường tròn
2. Chứng minh ba điểm P, M, N thẳng hàng
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho (O), đường kính AB=2R, C là một điểm tùy ý trên đường tròn (C không trùng với A và B); các tiếp tuyến với đường tròn tại A và C cắt nhau M. BM cắt đường tròn (O) tại điểm thứ hai là D. a) Chứng minh tứ giác OAMC nội tiếp. b) Chứng minh MC2=MD.MB. c) Cho OM=2R. Tính theo R diện tích xung quanh hình tạo thành khi quay ΔAMO xung quanh cạnh AM
a/
Ta có A và C cùng nhìn MO dưới 1 góc vuông nên A và C thuộc đường tròn đường kính MO => OAMC là tứ giác nội tiếp)
b/
Ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp MB\)
Xét tg vuông AMO có
\(MA^2=MD.MB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Mà MA=MC (Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
=> \(MC^2=MB.MD\)
c/
Khi tg AMO quay xung quang AM thì tạo thành hình chóp có đáy là đường tròn tâm A bán kính OA=R, trung đoạn là MO=2R
\(S_{xq}=\dfrac{1}{2}\Pi R.MO=\Pi.R^2\)
Cho nữa đường tròn tâm O , đường kính AB=2R , M là một điểm tùy ý trên nửa đường tròn ( M: ≠ A ; B) . Kẻ hai tia tiếp tuyến Ax và By với nửa đường tròn . Q ua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D.
a, Chứng minh : CD = AC +BD và góc COD = 90 độ .
b, Chứng minh : AC.BD=R^2 .
Anh em giúp mình với mai mình kiểm tra rồi nhé.
C, OC cắt AM tại E , OD cắt BM tại F . Chứng minh : EF = R.
Cho nửa đường tròn tâm O , đường kính AB = 2R , M là một điểm tùy ý trên nửa đường tròn ( M ≠ A ; B ). Kẻ hai tiếp tuyến Ax và By với nửa đường tròn . Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D
a) Chứng minh : CD = AC + BD và góc COD = 90 độ
c) OC cắt AM tại R , OD cắt BM tại F . Chứng minh EF = R
d) Tìm vị trí của M để CD có độ dài nhỏ nhất
a: Xét (O) có
CM,CA là tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là trung trực của AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: Xét tứ giác MEOF có
góc MEO=góc MFO=góc EOF=90 độ
nên MEOF là hình chữ nhật
=>EF=MO=R
Cho đường tròn (O) và hai đường kính AB,CD vuông góc với nhau.Từ một điểm M tùy ý trên cung AC,vẽ tiếp tuyến với đường tròn (O) tại M.Tiếp tuyến này cắt đường thẳng CD tại S.CMR:
a)SM2=SC.SD
b)góc MSD=2 lần góc MBA
c)Gọi H là giao điểm của MD với OA và K là giao điểm của CM với AD.CMR:HA.KB=HB.KA