Tìm số tự nhiên x lớn nhất biết 120+x và 288-x đều chia hết cho x.
B1: tìm số tự nhiên x lớn nhất, biết rằng 120 và 216 cùng chia hết cho x.
B2: Tìm số tự nhiên x<500, biết khi x chia cho 6;7;8 đều dư 2.
B3: Tìm số học sinh của lớp 6A, biết số hs đó khi xếp hàng 2;3;4;8 đều vừa đủ, biết số hs đó trong khoảng từ 35 => 60 hs. Tính số hs lớp 6A.
Mình đang gấp, giúp mình với.
Bài 3:
Gọi số học sinh lớp 6A là x(bạn)
Vì số học sinh lớp 6A khi xếp hàng 2;3;4;8 đều vừa đủ nên \(x\in BC\left(2;3;4;8\right)\)
\(\Leftrightarrow x\in\left\{24;48;72;96;...\right\}\)
mà \(35\le x\le60\)
nên x=48
Vậy: Lớp 6A có 48 bạn
Bài 1:
Ta có: \(120⋮x\)
\(216⋮x\)
Do đó: \(x\inƯC\left(120;216\right)\)
\(\Leftrightarrow x\in\left\{1;2;3;4;6;8;12;24\right\}\)
mà x lớn nhất
nên x=24
Bài 2:
Ta có: x chia 6,7,8 đều dư 2
nên \(x-2\in BC\left(6;7;8\right)\)
\(\Leftrightarrow x-2\in\left\{0;336;672;...\right\}\)
\(\Leftrightarrow x\in\left\{2;338;674;...\right\}\)
mà x<500
nên \(x\in\left\{2;338\right\}\)
A) TÌM SỐ NHIÊN x BIẾT RẰNG 210 CHIA HẾT CHO x; 126 CHIA HẾT CHO x VÀ 10<x<35
B) TÌM SỐ TỰ NHIÊN a LỚN NHẤT ,BIẾT RẰNG 120 CHIA HẾT CHO a VÀ 150 CHIA HẾT CHO a
C) TÌM SỐ TỰ MHIEEM LỚN NHẤT , BIẾT RẰNG : KHI CHIA HẾT CHO CÁC SỐ 100, 65 VÀ 150 CHO x THÌ CÁC SỐ LẦN LƯỢT LÀ 4,5,6
Tìm số tự nhiên x lớn nhất, biết rằng 120 và 216 cùng chia hết cho x
\(120=2^3\cdot3\cdot5;216=2^3\cdot3^3\)
=>\(ƯCLN\left(120;216\right)=2^3\cdot3=24\)
\(120⋮x;216⋮x\)
=>\(x\inƯC\left(120;216\right)\)
mà x lớn nhất
nên \(x=ƯCLN\left(120;216\right)=24\)
Tìm số tự nhiên x lớn nhất biết rằng 120+x chia hết cho 70 + x
Lời giải:
$120+x\vdots 70+x$
$\Rightarrow (70+x)+50\vdots 70+x$
$\Rightarrow 50\vdots 70+x$
$\Rightarrow x+70$ là Ư(50)$
Để $x$ lớn nhất thì $x+70$ là lớn nhất. Hay $x+70=ƯCLN(50)$
$\Rightarrow x+70=50$
$\Rightarrow x=-20$ (loại do $x$ là số tự nhiên)
Vậy không tồn tại $x$ tự nhiên thỏa mãn đề.
Tìm số tự nhiên x lớn nhất biết rằng x +150 và x + 375 đều chia hết cho x.
Tìm số tự nhiên x lớn nhất thỏa mãn 70 chia hết cho x ; 84 chia hết cho x ; 120 chia hết cho x
Vì x là số lớn nhất và 70⋮x; 84⋮x; 120⋮x
⇒x=ƯCLN(70,84,120)
Theo bài ra, ta có:
70=2.5.7
84=2.2.3.7=22.3.7
120=2.2.2.3.5=23.3.5
Thừa số nguyên tố chung:2
⇒ƯCLN(70,84,120)=2
⇒x=2
Vậy x=2
70 ⋮ x, 84 ⋮ x và 120 ⋮ x
⇒ x ∈ ƯC(70; 84; 120)
Mà x là số lớn nhất ⇒ x = ƯCLN(70; 84; 120)
Ta có:
\(70=2\cdot5\cdot7\)
\(84=2^2\cdot3\cdot7\)
\(120=2^3\cdot3\cdot5\)
\(\text{⇒}\) ƯLCN(70; 84; 120) \(=2\)
Vậy: x = 2
Vì x là số lớn nhất và 70⋮x; 84⋮x; 120⋮x
⇒xϵƯCLN(70,84,120)
Theo bài ra, ta có:
70=2.5.7
84=2.2.3.7=22.3.7
120=2.2.2.3.5=23.3.5
Thừa số nguyên tố chung:2
⇒ƯCLN(70,84,120)=2
⇒x=2
Vậy x=
a) Tìm ƯC (108, 180) mà các ước chung đó lớn hơn 15;
b) Tìm số tự nhiên x biết 126 x ; 210 x và 15 < x < 30
c) Tìm số tự nhiên lớn nhất sao cho 480 a và 600 a;
d) Tìm x biết x đồng thời chia hết cho 90; 120; 45 và biết x bé nhất khác 0.
a) Ta có :
108 = 22 . 33
180 = 22 . 32 . 5
=> ƯCLN( 108 , 180 ) = 22 . 32 = 36
=> ƯC( 108 , 180 ) = Ư( 36 ) = { 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 36 }
Mà bài bảo tìm Ư( 108 , 180 ) lớn hơn 15
=> Ta có tập hợp { 18 ; 36 }
b) Ta có :
126 ⋮ x ; 210 ⋮ x ( 15 < x < 20 )
=> x ∈ ƯC( 126 ; 210 )
Ta có :
126 = 2 . 32 . 7
210 = 2 . 3 . 5 . 7
=> ƯCLN( 126 , 210 ) = 2 . 3 . 7 = 42
=> ƯC( 126 , 210 ) = Ư( 42 ) = { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }
=> x ∈ { 1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42 }
Mà 15 < x < 20
=> x ∈ ∅
c) TA có : 480 ⋮ a ; 600 ⋮ a mà a lớn nhất
=> a = ƯCLN( 480 , 600 )
Ta có :
480 = 25 . 3 . 5
600 = 23 . 3 . 52
=> ƯCLN( 480 , 600 ) = 23 . 3 . 5 = 120
=> a = 120
Tìm các số tự nhiên x , biết :
a, 17 chia hết x - 1 và x - 1 chia hết 17.
90 chia hết x và 150 chia hết x và 5 < x < 30.
b, x là số lớn nhất và 60 ; 504 đều chia hết cho x.
c, x là số lớn nhất sao cho x + 495 và 195 - x đều là bội của x .
Bài 3: Tìm số tự nhiên x, biết:
126 chia hết cho x, 210 chia hết cho x, biết 15<x<30
Bài 4: Tìm số tự nhiên a lớn nhất thoả mãn:
a) 320 chia hết cho a và 480 chia hết cho a, b) 360 chia hết cho a và 600 chia hết cho a
Bài 5: Tìm số tự nhiên a lớn hơn 25, biết rằng các số 525; 875 và 280 đều chia hết cho a
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
Bài 5
525 ⋮ a; 875 ⋮ a; 280 ⋮ a
⇒ a ∈ ƯC(525; 875; 280)
Ta có:
525 = 3.5².7
875 = 5³.7
280 = 2³.5.7
⇒ ƯCLN(525; 875; 280) = 5.7 = 35
⇒ x ∈ ƯC(525; 875; 280) = Ư(35) = {1; 5; 7; 35}
Mà x > 25
⇒ x = 35