Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
inuyasha
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Bùi Thị Vân
2 tháng 11 2017 lúc 11:28


Phía trong của hình vuông ABCD ta dựng tam giác đều ADK. Ta có AD = AK = DK.
\(\widehat{DAK}=90^o-\widehat{KAD}=30^o\).
Do AB = AK (cùng bằng AD) nên tam giác BAK cân tại A.
Suy ra \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=75^o\).
Suy ra \(\widehat{BKC}=90^o-\widehat{ABK}=15^o\).
Tương tự ta cũng có \(\widehat{KDC}=30^o,\widehat{DCK}=75^o,\widehat{KCB}=15^o\).
Dễ dàng chứng minh được \(\Delta ABE=\Delta BKC\left(g.c.g\right)\) nên AE = BE = BK = KC.
Từ đó ta chứng minh được \(\Delta AED=\Delta CDK\left(c.g.c\right)\).
Suy ra \(\widehat{ADE}=\widehat{KDC}=30^o\).
Suy ra tam giác CDE đều.

 

Đạt Lai Lạt Ma
Xem chi tiết
Nhi Nhi
Xem chi tiết
Nguyễn Chí Cường
Xem chi tiết
Seu Vuon
3 tháng 2 2015 lúc 10:57

Bài này khó đó bạn, có lẽ phải vẽ thêm đường phụ

Lê Thị Quỳnh
3 tháng 2 2015 lúc 12:59

Có hai cách vẽ thêm hình phụ ở bài này:

Dựng tam giác đều IFB, I nằm trong tam giác CFB.

Hoặc  ở phía ngoài hình vuông ABCD dựng tam giác ABH đều.

Oanh Trần
Xem chi tiết
Marry Lili Potter
Xem chi tiết
Trần Tuấn Hoàng
27 tháng 5 2022 lúc 16:26

undefined

*Dựng △ADE đều.

\(\widehat{ODC}=\widehat{OCD}=15^0\Rightarrow\)△DOC cân tại O.

\(\Rightarrow OD=OC;\widehat{DOC}=180^0-2\widehat{ODC}=180^0-2.15^0=150^0\)

\(\widehat{BAE}=\widehat{CDE}=90^0-\widehat{ADE}=90^0-60^0=30^0\)

\(AB=AE=DE=DC=AD\).

\(\Rightarrow\)△DCE cân tại D, △ABE cân tại A.

\(\Rightarrow\widehat{DCE}=\widehat{ABE}=\dfrac{180^0-\widehat{BAE}}{2}=\dfrac{180^0-30^0}{2}=75^0\).

\(\Rightarrow\widehat{ECB}=\widehat{EBC}=90^0-\widehat{DCE}=90^0-75^0=15^0\)

\(\widehat{OCE}=90^0-\widehat{OCD}-\widehat{BCE}=90^0-15^0-15^0=60^0\)

△DOC và △BEC có: \(\widehat{ODC}=\widehat{EBC}=15^0;\widehat{OCD}=\widehat{ECB}=15^0;DC=BC\)

\(\Rightarrow\)△DOC=△BEC (g-c-g)

\(\Rightarrow OD=BE=OC=EC\)

\(\Rightarrow\)△OCE cân tại C mà \(\widehat{OCE}=60^0\)

\(\Rightarrow\)△OCE đều.

\(\widehat{OEB}=360^0-\widehat{OEC}-\widehat{BEC}=360^0-60^0-150^0=150^0\)

\(OE=CE=EB\Rightarrow\)△OEB cân tại E.

\(\Rightarrow\widehat{OBE}=\dfrac{180^0-\widehat{OEB}}{2}=\dfrac{180^0-150^0}{2}=15^0\)

\(\widehat{OBA}=90^0-\widehat{OBE}-\widehat{CBE}=90^0-15^0-15^0=60^0\)

Mà △OAB cân tại O \(\Rightarrow\)△OAB đều.

 

 

 

Hoàng Quyết Nguyễn
Xem chi tiết
Mac Duc Trung
Xem chi tiết