Muốn tìm 1 tích chia cho1 số
tìm hai số tự nhiên biết hiệu của chúng bằng 68 và biết nếu đem số thứ nhất chia cho1/4,số thứ hai chia cho 1/5 thì được hai kết quả bằng nhau
Gọi số thứ nhất là a, số thứ hai là b
a : 1/4 = b : 1/5
=> a x 4 = b x 5
=> a = 5/4 x b
=> a = 68 : (5 - 4) x 5 = 340
b = 340 - 68 = 272
Số thứ nhất bằng 340
Số thứ hai bằng 272.
nhé!
cho hai số tự nhiên biết giữa chúng có tất cả 95 số tự nhiên khác và số lớn gấp 3 lần số bé
giúp mn với mn tick đúng cho
1, cho P là số nguyên tố lớn hơn 3 . Chứng minh rằng : P2 - 1 chia hết cho 24
2, tìm các số nguyên x và y biết x2 - 6y2 = 1
Lời giải:
Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.
Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
TH1: $p=6k+1$ thì:
$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$
Nếu $k$ lẻ thì $3k+1$ chẵn.
$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$
Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$
TH2: $p=6k+5$
$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn
$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Nếu $k$ lẻ thì $k+1$ chẵn
$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$
Bài 1: Tìm a sao cho
1. 2𝑥²− 5x + a chia hết cho 2x + 1
2. 𝑥⁴− 9𝑥³+ 21x²+ 𝑥 + 𝑎 chia hết cho x² − 𝑥 − 2
1) \(2x^2-5x+a=x\left(2x+1\right)-3\left(2x+1\right)+3+a=\left(2x+1\right)\left(x-3\right)+3+a⋮\left(2x+1\right)\)
\(\Rightarrow3+a=0\Rightarrow a=-3\)
2) \(x^4-9x^3+21x^2+x+a=x^2\left(x^2-x-2\right)-8x\left(x^2-x-2\right)+15\left(x^2-x-2\right)+30+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+30+a⋮\left(x^2-x-2\right)\)
\(\Rightarrow30+a=0\Rightarrow a=-30\)
1, Lấy 1 số đem chia cho 64 được số dư là 38. Nếu lấy số đó chia cho 67 thương như phép tính trên và số dư là 14. Tìm số đó
2, Chia 126 cho1 số ta được số dư là 33 tìm số chia
3, khi chia 1 số cho 48 thì được số dư là 41. Nếu chia số đó cho 16 thì thương như thế nào
1.
Gọi số đó là A, thương ở mỗi phép chia là k. Ta có:
A = 64k + 38 = 67k + 14
\(\Rightarrow\)64k + 38 = 67k + 14
\(\Rightarrow\)24 = 3k
\(\Rightarrow\)k = 8
Số cần tìm là:
8 . 67 + 14 = 550
2.
Vì chia 126 cho 1 số được số dư là 33 nên 126 - 33 = 93 chia hết cho số đó(Số đó không thể bằng 1 hoặc 0 vì số nào cũng chia hết cho 1 và không số nào chia được cho 0)
Vì 93 chia hết cho số chia nên số chia có thể là: 3, 21, 93(không bt còn thiếu số nào nữa không)
Vậy số chia cần tìm là 3, 21, 93.
Cho 3 số có tổng bằng 40.82. Nếu lây số thứ nhất chia cho 0.5, số thứ hai nhân với 3 và số thứ ba chia cho1/4 thì được 3 kết quả bằng nhau . Tìm số thứ hai
từ1đến1000có bao nhiêu số chia hết cho1
tất cả các số kể cả 0 vì khi chia cũng bằng 0
tất cả đều chia hết cho 1 vì cái gì chia 1 cũng bằng 1
Tìm n thuộc Z để
a)2n-1 chia hết cho n+4
b) 3n chia hết cho 5-2n
c) 7n+11 chia hét cho1-3n
a, n-4 chia hết n-4
=>2(n-4)chia hết n-4
hay 2n-4 chia het n-4
vì 2n-1 chia het n-4
Nên (2n-1)-(2n-4) chia hết cho n-4
do đó 3 chia hết n-4
hay (n-4) thuộc ước của 3 là 3;1
+, n-4=3
n=7
+,n-4=1
n=5
Vậy n = 7;5
b, Có 3n chia hết 5-2n
=>2.3n chia hết 5-2n
hay 6n chia hết 5-2n
vì 5-2n chia hết 5-2n
nên 3(5-2n) chia hết 5-2n
do đó 15-6n chia hết 5-2n
Suy ra 6n+(15-6n) chia hết 5-2n
hay 15 chia hết 5-2n
nên (5-2n) thuộc ước của 15 là 15;5;3;1
Xét +, 5-2n=15
2n =-10
n=-5(loại vì n thuộc N)
+, 5-2n =5
2n=0
n=0(TM)
+, 5-2n=1
2n=4
n=2 (TM)
+,5-2n=3
2n=2
n=1(TM)
Vậy n=0;1;2
Tích vào ô Đúng hoặc Sai của mỗi khẳng định dưới đây
a, Muốn tìm số bị chia ta lấy thương nhân với số chia
b, Muốn tìm số bị chia ta lấy thương cộng với số chia
a, Muốn tìm số bị chia ta lấy thương nhân với số chia là Đúng
b, Muốn tìm số bị chia ta lấy thương cộng với số chia là Sai
Tìm n thuộc Z để
a)2n-1 chia hết cho n+4
b) 3n chia hết cho 5-2n
c) 7n+11 chia hét cho1-3n