Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 13:34

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{7^n+4}{3\cdot7^n+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{4}{7^n}}{3+\left(\dfrac{4}{7}\right)^n}=\dfrac{1}{3}\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{1-4^n}{1+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{1}{4^n}-1}{\dfrac{1}{4^n}+1}=-\dfrac{1}{1}=-1\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 13:32

3:

\(\lim\limits_{n\rightarrow\infty}\dfrac{2-5^{n-2}}{3^n+2\cdot5^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{5^{n-2}}{5^n}}{\dfrac{3^n}{5^n}+2\cdot\dfrac{5^n}{5^n}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{1}{25}}{\left(\dfrac{3}{5}\right)^n+2\cdot1}\)

\(=-\dfrac{1}{25}:2=-\dfrac{1}{50}\)

1:

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^n}-4}{3^n\cdot\dfrac{9}{4^n}+1}\)

\(=-\dfrac{4}{1}=-4\)

títtt
Xem chi tiết
YuanShu
15 tháng 10 2023 lúc 13:05

\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)

\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)

\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)

\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)

\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)

\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)

Vậy giới hạn \(\left(2\right)\) không xác định.

\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)

\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)

\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)

Vậy \(lim\left(3\right)\) không xác định.

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 13:27

2:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n+1}{2^n-1}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{3^n}+\dfrac{1}{3^n}}{\dfrac{2^n}{3^n}-\dfrac{1}{3^n}}=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{3^n}}{\left(\dfrac{2}{3}\right)^n-\dfrac{1}{3^n}}=1\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 13:34

1:

\(K=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^{n+1}+3^{n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^n\cdot2+3^n\cdot3}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot\dfrac{2^n}{3^n}-1}{\left(\dfrac{2}{3}\right)^n\cdot2+3}\)

\(=-\dfrac{1}{3}\)

2: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\left(\dfrac{3}{4}\right)^n-4}{\left(\dfrac{3}{4}\right)^n\cdot9+1}=-\dfrac{4}{1}=-4\)

títtt
Xem chi tiết
Trên con đường thành côn...
4 tháng 11 2023 lúc 22:04

\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^{n+2}}-\dfrac{4^{n+1}}{4^{n+2}}}{\dfrac{3^{n+2}}{4^{n+2}}+\dfrac{4^n}{4^{n+2}}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^n}.\dfrac{1}{4^2}-\dfrac{4^{n+1}}{4^{n+1}}.\dfrac{1}{4}}{\dfrac{3^{n+2}}{4^{n+2}}+\dfrac{4^n}{4^n}.\dfrac{1}{4^2}}=\dfrac{-\dfrac{1}{4}}{\dfrac{1}{4^2}}=-4\)

títtt
Xem chi tiết
Akai Haruma
14 tháng 10 2023 lúc 23:56

Lời giải:
1.

\(\lim\limits_{n\to \infty}(\sqrt{n^2+6n}-n)=\lim\limits_{n\to \infty}\frac{6n}{\sqrt{n^2+6n}+n}=\lim\limits_{n\to \infty}\frac{6}{\sqrt{1+\frac{6}{n}}+1}=\frac{6}{1+1}=3\)

2.

\(\lim\limits_{n\to \infty}(\sqrt{n+1}-\sqrt{n-1})=\lim\limits_{n\to \infty}\frac{(n+1)-(n-1)}{\sqrt{n+1}+\sqrt{n-1}}=\lim\limits_{n\to \infty}\frac{2}{\sqrt{n+1}+\sqrt{n-1}}=0\) do $\sqrt{n+1}+\sqrt{n-1}\to \infty$ khi $n\to \infty$

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 8:27

1:

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2-1-9n^2}{\sqrt{n^2-1}-3n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{-8n^2-1}{\sqrt{n^2-1}-3n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-8-\dfrac{1}{n^2}\right)}{n\left(\sqrt{1-\dfrac{1}{n^2}}-3\right)}=\lim\limits_{n\rightarrow\infty}-\dfrac{8}{1-3}\cdot n=\lim\limits_{n\rightarrow\infty}4n=+\infty\)

2: 

\(\lim\limits_{n\rightarrow\infty}\sqrt{4n^2+5}+n\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{4n^2+5-n^2}{\sqrt{4n^2+5}-n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5}{\sqrt{4n^2+5}-n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n^2}\right)}{n\left(\sqrt{4+\dfrac{5}{n^2}}-1\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n\cdot\left(\dfrac{3}{\sqrt{4}-1}\right)=+\infty\)

Pé Coldly
Xem chi tiết
Akai Haruma
30 tháng 11 2023 lúc 11:34

1.

Trước hết bạn nhớ công thức:

$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)

Áp vào bài:

\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)

\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)

\(=1.\frac{1}{3}=\frac{1}{3}\)

Akai Haruma
30 tháng 11 2023 lúc 11:43

2.

\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)

\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)

\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)

\(=x+a\) 

Akai Haruma
30 tháng 11 2023 lúc 11:46

3.

Trước tiên ta có công thức:

$1^3+2^3+....+n^3=(1+2+3+...+n)^2=\frac{n^2(n+1)^2}{4}$
Chứng minh: https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/

Khi đó:

\(\lim \frac{1^3+2^3+...+n^3}{n^4}=\lim \frac{n^2(n+1)^2}{4n^4}\\ =\lim \frac{(n+1)^2}{4n^2}=\frac{1}{4}\lim (1+\frac{1}{n})^2=\frac{1}{4}.1=\frac{1}{4}\)