Tìm số tự nhiên n sao cho
n.(n+1)=6
Tìm số tự nhiên n sao chon n2+404 là số chính phương
Tìm số tự nhiên n biết :
a)n+6 chia hết cho n
b)n+9chia hết cho n+1
c)n-5 chia hết chon+1
d)2n+7 chia hết cho n-2
a) Ta có: n + 6 \(⋮\)n
Do n \(⋮\)n => 6 \(⋮\)n
=> n \(\in\)Ư(6) = {1; 2; 3; 6}
b)Ta có: (n + 9) \(⋮\)(n + 1)
<=> [(n + 1) + 8] \(⋮\)(n + 1)
Do (n + 1) \(⋮\)(n + 1) => 8 \(⋮\)(n + 1)
=> (n + 1) \(\in\)Ư(8) = {1; 2; 4; 8}
=> n \(\in\){0; 1; 3; 7}
c) Ta có: n - 5 \(⋮\)n + 1
<=> (n + 1) - 6 \(⋮\)n + 1
Do (n + 1) \(⋮\)n + 1 => 6 \(⋮\)n + 1
=> n + 1 \(\in\)Ư(6) = {1; 2; 3; 6}
=> n \(\in\){0; 1; 2; 5}
d) Ta có: 2n + 7 \(⋮\)n - 2
=> 2(n- 2) + 11 \(⋮\)n - 2
Do 2(n - 2) \(⋮\)n - 2 => 11 \(⋮\)n - 2
=> n - 2 \(\in\)Ư(11) = {1; 11}
=> n \(\in\){3; 13}
a) n= 6
b) n= 1
d) n=1
Check lại nhé.
Tìm số tự nhiên sao cho:
a,n+2 chia hết cho n-1
b,n+4 chia hết chon+1
c,2n+7 chia hết cho n+1
d,2n+1 chia hết cho n-3
a) n+2 chia hết cho n - 1
=> n-1 + 3 chia hết cho n -1
=> n - 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {2;0;4;-2}
b) n +4 chia hết cho n + 1
=> n + 1 + 3 chia hết cho n + 1
=> n + 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {0;-2;2;-4}
c) 2n + 7 chia hết cho n + 1
=> n + 1 + n + 1 + 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 = {1;-1;5;-5}
=> n = {0;-2;4;-6}
d) 2n + 1 chia hết cho n - 3
=> n - 3 + n - 3 - 5 chia hết cho n - 3
=> n - 3 thuộc Ư(-5) = {1;-1;5;-5}
=> n = {4;2;8;-2}
a) Vì n+2 chia hết cho n-1 => (n-1)+3 chia hết cho n-1
Vì \(n-1⋮n-1\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n-1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
=> n={2;0;4;-2}
b) Vì n+4 chia hết cho n+1 => (n+1)+3 chia hết cho n+1
Mà \(\left(n+1\right)⋮n+1\Rightarrow3⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n+1 | 1 | 3 | -1 | -3 |
n | 0 | 2 | -2 | -4 |
=> n={0;2;-2;-4}
c) Vì 2n+7 chia hết cho n+1 => 2(n+1)+5 chia hết cho n+1
Mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng sau:
n+1 | 1 | 5 | -1 | -5 |
n | 0 | 4 | -2 | -6 |
=> n={0;4;-2;-6}
d) Vì 2n+1 chia hết cho n-3 => 2(n-3)+7 chia hết cho n-3
Mà \(2\left(n-3\right)⋮\left(n-3\right)\Rightarrow7⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng sau:
n-3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |
=> n={4;10;2;-4}
Gì mak zài zữ zậy bạn
Tìm số tự nhiên để 3 n+22 chia hết chon+3
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
Bài 1: Tìm n là số tự nhiên, biết ( n+6 ) chia hết n
Bài 2: Tìm x là số tự nhiên sao cho ( 2.n - 1) . (y+ 3)=12
BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)
1, Tìm các số tự nhiên x và y, sao cho: x+6=y.(x+1)
2, Tìm các số tự nhiên n sao cho n+3 chia hết cho n+1
3, Tìm số tự nhiên n biết: 1+2+3+4+5+...+n=465
mọi người giúp mk vs
mk cần gấp
Có bao nhiều số tự nhiên n để n+7 chia hết chon+1
tìm số tự nhiên n sao cho n(n+1)=6
n + 1 sẽ lớn hơn n 1 đơn vị.
Mà 6 = 2.3
= 1.6
TH1: 6 = 2.3
=> 3 lớn hơn 2 là 1 đơn vị
=> n = 2 ( Chọn )
TH2: 6 = 1.6
=> 6 lớn hơn 1 là 5 đơn vị
=> Loại
KL: n = 3
vì n.(n+1) là hai số tự nhiên liên tiếp=> n.(n+1)=6=2.3=> n=2
n . ( n + 1 ) = 6
<=> n . ( n + 1 ) = 2 . 3
Vì n . ( n + 1 ) là hai số tự nhiên liên tiếp
=> n = 2
Vậy số tự nhiên n là 2
Tìm các số tự nhiên n sao cho 6 ⋮ (n+1)
\(6\text{⋮}\left(n+1\right)\)
⇒ (n+1) ∈Ư(6)=\(\left\{1,2,3,6\right\}\)
n+1 1 2 3 6
n 0 1 2 5
Vậy ....
=> (n+1) ∈ Ư(6)
=> (n+1) thuộc { 1;2;3;6}
lập bảng
n+1 | 1. | 2. | 3. | 6. |
n | 0 | 1 | 2 | 5 |
=> n ∈{0;1;2;5}
\(n+1\in\left\{1;2;3;6\right\}\)
hay \(n\in\left\{0;1;2;5\right\}\)