Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oanh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2020 lúc 10:41

Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)

\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

\(=60\)

Thầy Cao Đô
Xem chi tiết
Nguyễn Huy Tú
8 tháng 4 2021 lúc 15:41

a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)

\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)

\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)

b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)

\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
8 tháng 4 2021 lúc 16:02

em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)

Khách vãng lai đã xóa
Nguyễn Duyên
3 tháng 5 2021 lúc 21:34
Khách vãng lai đã xóa
mini star
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 22:00

\(\left(3\sqrt{12}-4\sqrt{3}+\sqrt{15}\right)\cdot\sqrt{3}-2\sqrt{5}\)

\(=\left(6\sqrt{3}-4\sqrt{3}+\sqrt{15}\right)\cdot\sqrt{3}-2\sqrt{5}\)

\(=6+3\sqrt{5}-2\sqrt{5}=6+\sqrt{5}\)

SonGoku
28 tháng 10 2023 lúc 22:04

(3\(\sqrt{12}\)-4\(\sqrt{3}\)+\(\sqrt{15}\)).\(\sqrt{3}\)-2\(\sqrt{5}\)

=\(\left(6\sqrt{3}-4\sqrt{3}+\sqrt{15}\right).\sqrt{3}-2\sqrt{5}\)

=\(\left(2\sqrt{3}+\sqrt{15}\right).\sqrt{3}-2\sqrt{5}\)

=\(6+\sqrt{45}-2\sqrt{5}\)

=\(6+3\sqrt{5}-2\sqrt{5}\)

=\(6+\sqrt{5}\)

Thu Nguyen
Xem chi tiết
Aki Tsuki
25 tháng 6 2018 lúc 13:20

Hỏi đáp Toán

Thầy Cao Đô
Xem chi tiết
lê anh nhật minh
22 tháng 2 2021 lúc 15:23

Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.

Hai tam giácΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.

Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.

Tam giác DEFDEF lần lượt cóD′E=D′B′2=√132D′E=D′B′2=132,D′F=D′A2=52D′F=D′A2=52,EF=B′A2=√5EF=B′A2=5.

Theo hê rông ta có:SDEF=√614SDEF=614. Suy raD′H=2SDEFEF=√30510D′H=2SDEFEF=30510.

Tam giác D′A′HD′A′H có:cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cos⁡A′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.

Do đóˆA′HD′≈118,4∘A′HD′^≈118,4∘hay(ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.

Khách vãng lai đã xóa
Nguyễn Thị Nhật Linh
12 tháng 5 2021 lúc 15:38

 là hình chiếu vuông góc của D' trên (ABCD).

\Rightarrow \Delta ACD là hình chiếu vuông góc của \Delta ACD' trên mặt phẳng (ABCD).

Do đó \cos \alpha = \dfrac{S_{ACD}}{S_{ACD'}} với \alpha là góc cần tìm.

Ta có \left\{ \begin{aligned} & DA^2 + DC^2 = 3\\ & DC^2 + DD'^2 = 4\\ & DA^2 + DD'^2 = 5\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & DA^2 = 2\\ & DC^2 = 1\\ & DD'^2 = 3\\ \end{aligned}\right..

\Rightarrow S_{ACD} = \dfrac12.DA.DC = \dfrac{\sqrt2}2.

Dùng công thức Hê rông ta có S_{ACD'} = \dfrac{\sqrt{11}}2.

Vậy \cos \alpha = \sqrt{\dfrac2{11}}.

Khách vãng lai đã xóa
Phạm Thị Hậu
12 tháng 5 2021 lúc 15:58

 là hình chiếu vuông góc của D' trên (ABCD).

\Rightarrow \Delta ACD là hình chiếu vuông góc của \Delta ACD' trên mặt phẳng (ABCD).

Do đó \cos \alpha = \dfrac{S_{ACD}}{S_{ACD'}} với \alpha là góc cần tìm.

Ta có \left\{ \begin{aligned} & DA^2 + DC^2 = 3\\ & DC^2 + DD'^2 = 4\\ & DA^2 + DD'^2 = 5\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & DA^2 = 2\\ & DC^2 = 1\\ & DD'^2 = 3\\ \end{aligned}\right..

\Rightarrow S_{ACD} = \dfrac12.DA.DC = \dfrac{\sqrt2}2.

Dùng công thức Hê rông ta có S_{ACD'} = \dfrac{\sqrt{11}}2.

Vậy \cos \alpha = \sqrt{\dfrac2{11}}.

Khách vãng lai đã xóa
professor
Xem chi tiết

image.png

professor
6 tháng 9 lúc 15:52

?


Để biểu diễn các số **2**, **3**, **4**, **5** trên **trục số**, bạn thực hiện như sau:


---


### ✅ **Các bước biểu diễn trên trục số:**


1. **Vẽ một trục số ngang** (đường thẳng có mũi tên 2 đầu).

2. **Chọn một điểm làm gốc** (thường là số 0).

3. Đánh dấu các điểm cách đều nhau và đánh số: 1, 2, 3, 4, 5,...

4. Xác định và **gạch đậm** hoặc **đánh dấu rõ** tại các điểm **2**, **3**, **4**, và **5**.

5. (Nếu yêu cầu cụ thể hơn: dùng chấm tròn tô màu, hoặc ký hiệu rõ từng số.)


---


### 📌 **Minh họa sơ bộ bằng ký hiệu ASCII (đơn giản):**


```

------|------|------|------|------|------|------>

1 2 3 4 5 6


● ● ● ●

(2) (3) (4) (5)

```


---


### 📌 Gợi ý vẽ bằng tay hoặc phần mềm:


* Nếu vẽ trên giấy: dùng thước và chia đều các đoạn.

* Nếu dùng phần mềm: bạn có thể vẽ bằng **GeoGebra**, **Paint**, hoặc chèn trong Word bằng công cụ **Shapes → Line + Text Box**.


---


Nếu bạn muốn, mình có thể **vẽ trục số với các điểm đó** bằng hình ảnh cho bạn. Bạn muốn mình gửi hình ảnh không?


Hoa Phan
Xem chi tiết
Bich Hong
15 tháng 8 2018 lúc 21:24

\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)

\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}=\sqrt{\sqrt{3}^2+2\sqrt{3}.1+1^2}+\sqrt{\sqrt{3}^2-2\sqrt{3}.1+1^2}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}+2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\dfrac{5\sqrt{3}+10\sqrt{2}}{9-8}-\dfrac{5\sqrt{3}-10\sqrt{2}}{9-8}=\sqrt{3}+1+\sqrt{3}-1-5\sqrt{3}-10\sqrt{2}-5\sqrt{3}+10\sqrt{2}=-8\sqrt{3}\)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)

Lê Thị Thùy Dung
Xem chi tiết
⭐Hannie⭐
27 tháng 10 2023 lúc 21:35

Bài `1`

\(\sqrt{4-2\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{\sqrt{3}-3}{\sqrt{3}-1}\\ =\sqrt{3-2\sqrt{3}+1}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}+1-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}\\ =-\sqrt{3}\)

Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 22:32

2:

a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

b: B=5

=>\(5\left(\sqrt{x}+3\right)=\sqrt{x}+8\)

=>\(5\sqrt{x}+15=\sqrt{x}+8\)

=>\(4\sqrt{x}=-7\)(loại)

Vậy: \(x\in\varnothing\)

Sơn Thanh
Xem chi tiết
Không Tên
30 tháng 6 2018 lúc 8:43

a)   \(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\)\(\sqrt{2}A=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

                       \(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

                        \(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

\(\Rightarrow\)\(A=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

b) bn lm tương tự