Cho biểu thức M = 1 + 5 + 5² + 5³ + ... + 5²⁰²² + 5²⁰²³
Chứng minh: M chia hết cho 6.
Bài 1 :
Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :
a) A chia hết cho 13 b) A chia hết cho 40
Bài 2 :
Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .
Bài 3 :
Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)
a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?
Bài 4 :
Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
Cho biểu thức A 5¹+5²+5³+...+5²⁹⁹5³⁰⁰ chứng minh rằng A chia hết cho 6
\(A=5^1+5^2+5^3+...+5^{299}+5^{300}\)
\(=\left(5^1+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{299}+5^{300}\right)\)
\(=5^1\left(1+5\right)+5^3\left(1+5\right)+...+5^{299}\left(1+5\right)\)
\(=6\left(5^1+5^3+...+5^{299}\right)\) chia hết cho \(6\).
A = 5(1+2+3)+54(1+2+3)+...+5298(1+2+3), A= 5.6+54.6+...+5298.6,A= 6.(5+54+...+5298)⋮6 => A⋮6
Cho biểu thức: M = 5 + 5 2 + 5 3 + … + 5 80 . Chứng tỏ rằng: a) M chia hết cho 6. b) M không phải là số chính phương.
tự giải hả trời
cho bn bt lun nha
bn lm đúng rùi
đúng nha
a) Ta có: M = 5 + 5 2 + 5 3 + … + 5 80 = 5 + 5 2 + 5 3 + … + 5 80 = (5 + 5 2) + (53 + 5 4) + (55 + 5 6) +... + (579 + 5 80) = (5 + 5 2) + 5 2 .(5 + 5 2) + 5 4(5 + 5 2) + ... + 5 78(5 + 5 2) = 30 + 30.52 + 30.54 + ... + 30.578 = 30 (1+ 5 2 + 5 4 + ... + 5 78) 30 b) Ta thấy : M = 5 + 5 2 + 5 3 + … + 5 80 chia hết cho số nguyên tố 5. Mặt khác, do: 5 2+ 5 3 + … + 5 80 chia hết cho 5 2 (vì tất cả các số hạng đều chia hết cho 5 2) M = 5 + 5 2 + 5 3 + … + 5 80 không chia hết cho 5 2 (do 5 không chia hết cho 5 2) VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí M chia hết cho 5 nhưng không chia hết cho 5 2 M không phải là số chính phương. (Vì số chính phương chia hết cho số nguyên tố p thì chia hết cho p 2).
Đúng ko???
M= 5+5^2+...+5^80
M= (5+5^2)+(5^3+5^4)+...+(5^79+5^80)
M= 5(1+5)+5^3(1+5)+...+5^79(1+5)
M= 5.6+5^3.6+...+5^79.6
M= 6(5+5^3+...+5^79) chia hết cho 6
=> M chia hết cho 6.
giúp mình với !!!!!!!!!!!!!!!!!!! đang cần gấp !!!!!!!!!!!!!!!
cho biểu thức a= 6+ 5\(^2\) + 5\(^3\) +........+ 5\(^{2022}\) + 5\(^{2023}\) . chứng minh 4a + 1 chia hết cho 5\(^{2023}\)
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
Cho biểu thức
B=5+5 mũ 1 +5 mũ 2 +........+5 mũ 30
Chứng minh rằng : b chia hết 6; b chia hết 31
C= 1+3+3 mũ 2+ ........+ 3 mũ 11 . Chứng minh rằng : c chia hết cho 13; c chia hết cho 40
cho M=1+5+52+53+...+529.Chứng minh rằng:
a,M chia hết cho 6
b,M chia hết cho 32
a, \(M=1+5+5^2+5^3+..+5^{29}\)
\(=\left(1+5\right)+5^2\left(1+5\right)+...+5^{28}\left(1+5\right)\)
\(=6+5^2.6+...+5^{28}.6=6\left(1+5^2+...+5^{28}\right)⋮6\)( đpcm )
Cho biểu thức: M = 5 + 52 + 53 + ... + 580. Chứng tỏ rằng:
a) M chia hết cho 6.
b) M không phải là số chính phương.
a)\(M=5+5^2+5^3+5^4+...+5^{79}+5^{80}\)(có 80 số hạng)
\(M=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)(có 40 nhóm)
\(M=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(M=5\cdot6+5^3\cdot6+...+5^{79}\cdot6\)
\(M=6\left(5+5^3+...+5^{79}\right)⋮6\)
Cho biểu thức: M=3^5+3^6+3^7+3^8+3^9+3^10.
Chứng minh rằng M chia hết cho 91.
M=3^5+3^6+3^7+3^8+3^9+3^10
= ( 3^5 + 3^7 + 3^9 ) + ( 3^6 + 3^8 + 3^10 )
= 3^5 x ( 1 + 3^2 + 3^4 ) + 3^6 x ( 1 + 3^2 + 3^4 )
= 3^5 x 91 + 3^6 x 91 = 91 x ( 3^5 + 3^6 ) chia hết cho 91
Cho biểu thức: M = 5 + 52 + 53 + ... + 580. Chứng tỏ rằng:
a. M chia hết cho 6
b. M không phải là số chính phương
a) M = 5 + 52 + 53 + ... + 580 (có 80 số hạng; 80 chia hết cho 2)
M = (5 + 52) + (53 + 54) + ... + (579 + 580)
M = 5.(1 + 5) + 53.(1 + 5) + ... + 579.(1 + 5)
M = 5.6 + 53.6 + ... + 579.6
M = 6.(5 + 53 + ... + 579) chia hết cho 6
Chứng tỏ M chia hết cho 6
b) Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25
=> 52; 53; ...; 580 đều chia hết cho 5 và 25
Mà 5 chia hết cho 5 nhưng không chia hết cho 25
=> M chia hết cho 25 nhưng không chia hết cho 25, không phải số chính phương
Chứng tỏ M không phải số chính phương
a. Ta có: M = 5 + 52 + 53 + ...+ 580
= 5 + 52 + 55 + ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) + ... + (579 + 580)
= (5 + 52) + 52 . (5 + 52) + ... + 578(5 + 52)
= 30 + 30 . 52 + 30 . 54 + ... + 30 . 578 = 30(1 + 52 + 54 + ... + 578) chia hết cho 30
b. Ta thấy : M = 5 + 52 + 53 + ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương