Cho ∆ABC vuông tại A, đường cao AH. Biết AB = 12dm, BH = 9dm.
a) Tính BC, AC, AH.
b) Tính góc B và góc C (làm tròn đến độ)
c) Gọi M là trung điểm BC. Tính AM và chu vi ∆AHM.
Cho tam giác ABC vuông tại A có AB = 5cm, BC = 13cm. AH là đường cao.
a) Tính BH, CH, AC và AH.
b) Tính các góc B và C của tam giác ABC.
c) Gọi M là trung điểm của BC tính diện tích tam giác AHM
\(a,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{144}{13}\left(cm\right)\\AH=\sqrt{\dfrac{25}{13}\cdot\dfrac{144}{13}}=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Leftrightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}=23^0\)
\(c,\) Vì AM là trung tuyến ứng ch BC nên \(AM=BM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)
Ta có \(MH=MB-HB=6,5-\dfrac{25}{13}=\dfrac{119}{26}\left(cm\right)\)
Vậy \(S_{AMH}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
Cho ▲ ABC vuông tại A đường cao AH. Biết BH=4cm, CH=9cm. Gọi D,E là hình chiếu của H trên AB và AC. Chứng minh: a) tứ ADHE là hình chữ nhật, so sánh AH và DE b) AD×AB = AE×AC c) tính góc ABC và góc ACB (làm tròn đến độ) d) Gọi M là trung điểm của BC, một góc xAy quay quanh M sao cho Mx cắt AB tại P , My cắt AC tại Q . xác định vị trí của P và Q để PQ có độ dài nhỏ nhất
2.Cho tam giác ABC vuông tại A, đường cao AH . Biết AB = 6cm AC = 8cm . a) Tính BC; BH và số đo góc C (số đo góc làm tròn đến độ) b) Gọi E, F là hình chiếu của H trên AB, AC . Chứng minh AE.BE+AF. CF = A * H ^ 2 c) Gọi I là trung điểm của BC, AI cắt EF tại O. Chứng minh: 1/(O * A ^ 2) = 1/(A * E ^ 2) + 1/(A * F ^ 2)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
XétΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(HE^2+HF^2=AH^2\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot BE=HE^2\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot BE+AF\cdot FC\)
\(=HE^2+HF^2\)
\(=AH^2\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên AI=BI=CI
IA=IC
=>ΔIAC cân tại I
=>\(\widehat{IAC}=\widehat{ICA}\)
=>\(\widehat{OAF}=\widehat{ACB}\)
AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABH}\)
=>\(\widehat{AFO}=\widehat{ABC}\)
\(\widehat{AFO}+\widehat{FAO}=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AO\(\perp\)OF tại O
=>AI\(\perp\)FE tại O
Xét ΔAEF vuông tại A có AO là đường cao
nên \(\dfrac{1}{AO^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
Cho tam giác ABC vuông tại A có AH là đường cao. Biết BH 7,2cm và HC 12,8cm . a) Tính độ dài các đoạn AH , AC . b) Gọi I là trung điểm BC . Tính số đo góc ACB và góc IAC (làm tròn đến phút). c) Chứng minh: sin 2C = 2sinC.cosC
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn ; BH=4cm và HC=6cm
a) Tính độ dài các đoạn AH,AB,AC
b) Gọi M là trung điểm của AC . Tính số đo góc AMB ( làm tròn đến độ )
c) Kẻ AK vuông góc với BM ( K thuộc BM ) . Chứng minh BK.BM=BH.BC
Cho tam giác ABC vuông tại A có AH là đường cao
a) Biết AC = 16cm; BC = 20cm. Tính CH, AH
b) Kẻ HE vuông góc với AB tại E, kẻ HF vuông góc với AC tại F. Tính góc ABC và góc AFE (Làm tròn đến độ)
c) Kẻ AM là trung tuyến của tam giác ABC, AM cắt EF tại I. Gọi O là giao điểm của AH và EF. Tính diện tích tứ giác OIMH. (Số gần đúng làm tròn đến chữ số thập phân thứ nhất)
1) Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn: BH=4cm và HC=6cm
a) Tính độ dài các đoạn AH,AB,AC
b) Gọi M là trung điểm của AC. Tính số đo góc AMB( làm tròn đến độ )
c) Kẻ AK vuông góc với BM (K thuộc BM) . Chứng minh : BK.BM=BH.BC
Vẽ hình luôn ah
a: BC=BH+CH
=4+6
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot6}=2\sqrt{6}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{4\cdot10}=2\sqrt{10}\left(cm\right)\\AC=\sqrt{6\cdot10}=2\sqrt{15}\left(cm\right)\end{matrix}\right.\)
b: M là trung điểm của AC
=>\(AM=\dfrac{AC}{2}=\sqrt{15}\left(cm\right)\)
Xét ΔAMB vuông tại A có
\(tanAMB=\dfrac{AB}{AM}=\sqrt{\dfrac{2}{3}}\)
=>\(\widehat{AMB}\simeq39^0\)
c: ΔABM vuông tại A có AK là đường cao
nên \(BK\cdot BM=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH= 4cm, CH= 9cm. a) Tính AH, AB, AC ? b) Gọi M là trung điểm của AC. Tính góc BMC? (số đo làm tròn đến độ) c) Kẻ AK vuông góc BM tại M. Chứng minh góc ACB = góc BKH
giúp mình với ạ