Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phát Lê
Xem chi tiết
Đỗ Thanh Hải
18 tháng 6 2021 lúc 14:45

Đề thế này hả e

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Leftrightarrow6x-3y=2x+y\)

\(\Leftrightarrow4x=4y\)

\(\Leftrightarrow x=y\)

Vậy.....

Đỗ Thanh Hải
18 tháng 6 2021 lúc 14:48

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Leftrightarrow6x-3y=2x+2y\)

\(\Leftrightarrow4x=5y\)

\(\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

Vậy....

a làm lại nhé, nãy sai

Trần Long Tăng
Xem chi tiết
Carthrine
Xem chi tiết
Carthrine Nguyễn
Xem chi tiết
Dương Phan Minh Thư
Xem chi tiết
Suong Nghiem Thi
Xem chi tiết
trang chelsea
26 tháng 1 2016 lúc 19:18

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:31

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:24

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

Minh Hiếu
Xem chi tiết
Minh Hiếu
23 tháng 8 2021 lúc 17:57

mọi người giúp với

Akai Haruma
23 tháng 8 2021 lúc 18:39

1.

PT $\Leftrightarrow x^2+3xy+(3y^2-3y)=0$

Coi đây là pt bậc 2 ẩn $x$

PT có nghiệm $\Leftrightarrow \Delta=(3y)^2-4(3y^2-3y)\geq 0$

$\Leftrightarrow -3y^2+12y\geq 0$

$\Leftrightarrow -y^2+4y\geq 0$

$\Leftrightarrow 0\leq y\leq 4$

Vì $y$ nguyên nên $y\in \left\{0;1;2;3;4\right\}$

Để pt có nghiệm nguyên thì $\Delta$ là scp. Thử các giá trị $y$ trên vô $\Delta$ ta thấy $y=0; 2;4$

Thay vô pt ban đầu thì:

$y=0\Rightarrow x=0$ (thỏa)
$y=2\Rightarrow x=-3\pm \sqrt{3}$ (loại)

$y=4\Rightarrow x=-6$ (thỏa)

Akai Haruma
23 tháng 8 2021 lúc 18:48

2.

PT $\Leftrightarrow x^2-2xy+(5y^2-y-1)=0$

Coi đây là pt bậc 2 ẩn $x$.

$\Delta'=y^2-(5y^2-y-1)=-4y^2+y+1$

Để pt có nghiệm thì $\Delta'\geq 0$

$\Leftrightarrow -4y^2+y+1\geq 0$

$\Leftrightarrow \frac{1-\sqrt{17}}{8}\leq y\leq \frac{1+\sqrt{17}}{8}$

Mà $y$ nguyên nên $y=0$

Thay vô pt ban đầu ta có $x^2=1\Rightarrow x=\pm 1$

Vậy $(x,y)=(\pm 1,0)$