Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn quang hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 22:01

a: \(x^8+x^4+1\)

\(=x^8+2x^4+1-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4+1+x^2\right)\left(x^4+1-x^2\right)\)

\(=\left(x^4+2x^2+1-x^2\right)\left(x^4-x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\cdot\left[\left(x^2+1\right)^2-x^2\right]\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

b: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+1+x\right)\)

\(=\left(x^2+x+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+x+1\right)\left(x+1\right)^2\)

Lizy
Xem chi tiết
HT.Phong (9A5)
2 tháng 10 2023 lúc 6:37

\(x^4+1\)

\(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)

\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)

______

\(4x^4y^4+1\)

\(=4x^4y^4+4x^2y^2+1-4x^2y^2\)

\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)

\(=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)

______

\(x^4+3x^2+4\)

\(=x^4+x^3+2x^2-x^3-x^2-2x+2x^2+2x+4\)

\(=\left(x^4+x^3+2x^2\right)-\left(x^3+x^2+2x\right)+\left(2x^2+2x+4\right)\)

\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)\)

\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)

______

\(x^2+3xy+2y^2\)

\(=x^2+xy+2xy+2y^2\)

\(=x\left(x+y\right)+2y\left(x+y\right)\)

\(=\left(x+2y\right)\left(x+y\right)\)

lưu ly
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 14:23

\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)

Lizy
Xem chi tiết
Toru
26 tháng 8 2023 lúc 9:29

\(16-x^2\)

\(=\left(4-x\right)\left(4+x\right)\)

\(---\)

\(16-3x+1^2\) (kt lại đề bài nhé)

\(x^4y^4+4x^2y^2+4\)

\(=\left[\left(xy\right)^2\right]^2+2\cdot\left(xy\right)^2\cdot2+2^2\)

\(=\left[\left(xy\right)^2+2\right]^2=\left(x^2y^2+2\right)^2\)

\(---\)

\(y^2-4y+4-x^2\)

\(=y^2-2\cdot y\cdot2+2^2-x^2\)

\(=\left(y-2\right)^2-x^2\)

\(=\left(y-2-x\right)\left(y-2+x\right)\)

Lê Thanh Mai
Xem chi tiết
SAD
2 tháng 9 2018 lúc 1:27

\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x+2\right)\)

Thơ Nụ =))
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 1 2024 lúc 22:35

a: \(x^2+2x+1+4x+4\)

\(=\left(x^2+2x+1\right)+\left(4x+4\right)\)

\(=\left(x+1\right)^2+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+1+4\right)\)

\(=\left(x+1\right)\left(x+5\right)\)

b: Sửa đề: \(2x^3+6x^2+x^2+3x\)

\(=2x^2\left(x+3\right)+x\left(x+3\right)\)

\(=\left(x+3\right)\left(2x^2+x\right)\)

\(=x\left(x+3\right)\left(2x+1\right)\)

c: \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{4}x+1\)

\(=\dfrac{1}{4}x\left(\dfrac{1}{4}x+1\right)+\left(\dfrac{1}{4}x+1\right)\)

\(=\left(\dfrac{1}{4}x+1\right)\left(\dfrac{1}{4}x+1\right)=\left(\dfrac{1}{4}x+1\right)^2\)

리민
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 20:24

a: \(x^4+x^2+2x+6\)

\(=x^4-2x^3+3x^2+2x^3-4x^2+6x+2x^2-4x+6\)

\(=\left(x^2-2x+3\right)\left(x^2+2x+2\right)\)

Ngọc Băng Giao
Xem chi tiết
Trần Thanh Phương
1 tháng 9 2018 lúc 21:03

Cái này chưa học bt làm mấy câu

b. x^2 + 2x - 3

= x^2 + 3x - x - 3

= x ( x - 1 ) + 3 ( x - 1 )

= ( x + 3 ) ( x - 1 )

Thanh Ngân
1 tháng 9 2018 lúc 21:09

\(4x^2-3x-4\)

\(=\left(2x\right)^2-2.2x.\frac{3}{4}+\frac{9}{16}-\frac{73}{16}\)

\(=\left(2x-\frac{3}{4}\right)^2-\frac{73}{16}\)

\(=\left(2x-\frac{3}{4}\right)^2-\left(\frac{\sqrt{73}}{4}\right)^2\)

\(=\left(2x-\frac{3}{4}-\frac{\sqrt{73}}{4}\right)\left(2x-\frac{3}{4}+\frac{\sqrt{73}}{4}\right)\)

\(=\left(2x-\frac{3+\sqrt{73}}{4}\right)\left(2x+\frac{-3+\sqrt{73}}{4}\right)\)

\(x^2+2x-3\)

\(=x^2-x+3x-3\)

\(=x\left(x-1\right)+3\left(x-1\right)\)

\(=\)\(\left(x+3\right)\left(x-1\right)\)

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) \(\left(1\right)\)

đặt \(x^2+5x+5=t\)

\(\left(1\right)\)\(=\) \(\left(t-1\right)\left(t+1\right)-24\)

            \(=t^2-1-24\)

            \(=t^2-25\)

            \(=\left(t-5\right)\left(t+5\right)\)

hay \(\left(1\right)=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

               \(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

                \(=x\left(x+5\right)\left(x^2+5x+10\right)\)

học tốt

Trần Thanh Phương
1 tháng 9 2018 lúc 21:11

d) 

Hướng dẫn :

(x+1)(x+2)(x+3)(x+4)-24

= x(x+5)(x^2+5x+10)

P/s: có gì vào trang web mathway.com viết đa thức vào rồi nhấn " factor " là ra nhân tử nhé

Tiến Đạt
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 14:09

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)