tìm số tự nhiên x lớn nhất , biết rằng
17 chia hết cho x ; 21 chia hết cho x và 51 cũg chia hết cho x
A) TÌM SỐ NHIÊN x BIẾT RẰNG 210 CHIA HẾT CHO x; 126 CHIA HẾT CHO x VÀ 10<x<35
B) TÌM SỐ TỰ NHIÊN a LỚN NHẤT ,BIẾT RẰNG 120 CHIA HẾT CHO a VÀ 150 CHIA HẾT CHO a
C) TÌM SỐ TỰ MHIEEM LỚN NHẤT , BIẾT RẰNG : KHI CHIA HẾT CHO CÁC SỐ 100, 65 VÀ 150 CHO x THÌ CÁC SỐ LẦN LƯỢT LÀ 4,5,6
tìm số tự nhiên x lớn nhất biết rằng 300 chia hết cho x và 700 chia hết cho x
tìm số tự nhiên x lớn nhất biết rằng 42 chia hết cho x và 70 chia hết cho x
ƯCLN(42;70)
42=2.3.7
70=2.5.7
ƯCLN(42;70)=2.7=14
li ke nha
a)Vì 40 chia hết x, 70 chia hết x và x là số tự nhiên lớn nhất nên: x = ƯCLN (40, 70) = 10.
a) Tìm ƯCLN rồi tìm các ước chung của 90 và 126
b) Tìm số tự nhiên a lớn nhất, biết rằng 480 chia hết cho a và 600 chia hết cho a.
c) Tìm số tự nhiên x, biết rằng 126 chia hết cho x, 210 chia hết cho xvà 15 < x < 30
a) Ta có:
90 = 2 × 32 × 5
126 = 2 × 32 × 7
=> ƯCLN(90; 126) = 2 × 32 = 18
=> ƯC(90; 126) = Ư(18) = {1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 ; 9 ; -9 ; 18 ; -18}
b) Do 480 chia hết cho a, 600 chia hết cho a
=> a thuộc ƯC(480; 600)
Mà a lớn nhất => a = ƯCLN(480; 600) = 120
a) Phân tích ra thừa số nuyên tố:
90=2.32.5
126=2.32.7
ƯCLN(90;126)=18
ƯC(90;126)= {-18;-9;-6;-3;-2;-1;1;2;3;6;9;18}
b) ƯCLN(480;600}=120
Vì số a lớn nhất nên a=120
Tìm số tự nhiên x lớn nhất, biết rằng 120 và 216 cùng chia hết cho x
\(120=2^3\cdot3\cdot5;216=2^3\cdot3^3\)
=>\(ƯCLN\left(120;216\right)=2^3\cdot3=24\)
\(120⋮x;216⋮x\)
=>\(x\inƯC\left(120;216\right)\)
mà x lớn nhất
nên \(x=ƯCLN\left(120;216\right)=24\)
Tìm số tự nhiên x , biết rằng 17 chia hết cho x- 1 và x-1 chia hết cho 17
TL :
( Sai thì thôi nha )
17 \(⋮\)( x - 1 ) và ( x - 17 )
Ta chuyển về dạng tìm x : \(x-1=17\)
\(x=17+1\)
\(x=18\)
Vậy \(x=18\)
Vì \(\hept{\begin{cases}17⋮x-1\\x-1⋮17\end{cases}}\)
\(\Rightarrow\)x-1=17
x =17+1
x=18
Vậy x=18.
Tìm số tự nhiên x lớn nhất biết rằng 120+x chia hết cho 70 + x
Lời giải:
$120+x\vdots 70+x$
$\Rightarrow (70+x)+50\vdots 70+x$
$\Rightarrow 50\vdots 70+x$
$\Rightarrow x+70$ là Ư(50)$
Để $x$ lớn nhất thì $x+70$ là lớn nhất. Hay $x+70=ƯCLN(50)$
$\Rightarrow x+70=50$
$\Rightarrow x=-20$ (loại do $x$ là số tự nhiên)
Vậy không tồn tại $x$ tự nhiên thỏa mãn đề.
Bài 3: Tìm số tự nhiên x, biết:
126 chia hết cho x, 210 chia hết cho x, biết 15<x<30
Bài 4: Tìm số tự nhiên a lớn nhất thoả mãn:
a) 320 chia hết cho a và 480 chia hết cho a, b) 360 chia hết cho a và 600 chia hết cho a
Bài 5: Tìm số tự nhiên a lớn hơn 25, biết rằng các số 525; 875 và 280 đều chia hết cho a
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
Bài 5
525 ⋮ a; 875 ⋮ a; 280 ⋮ a
⇒ a ∈ ƯC(525; 875; 280)
Ta có:
525 = 3.5².7
875 = 5³.7
280 = 2³.5.7
⇒ ƯCLN(525; 875; 280) = 5.7 = 35
⇒ x ∈ ƯC(525; 875; 280) = Ư(35) = {1; 5; 7; 35}
Mà x > 25
⇒ x = 35
Bài 1:
a) Tìm số tự nhiên x lớn nhất biết rằng 480 chia hết cho x và 600 chia hết cho x
b) Tìm số tự nhiên x biết 126 chia hết cho x và 210 chia hết cho x sao cho 15 < x < 30
Bài 2: Tìm ƯC của 3n + 7 và n + 2 ( n thuộc N )