chúng minh rằng với mọi n thuộc N, n> 1 thì 2^2^n có chữ số tận cùng là7
giúp mik với
Chứng minh rằng với mọi n thuộc N thì n5 và n lun có chữ số tận cùng giống nhau
Coi chữ số tận cùng của n là h
Với n lẻ :
\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)
Tương tự với n chẵn :
\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)
Vậy ...
Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:
\(A=n^5-n\)
A chia hết cho 5 với mọi n thuộc N (*)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)
(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm
p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa
Ta có:
n5 - n = n(n4 - 1)
= n(n2 - 1)(n2 - 4 + 5)
= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)
= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)
Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)
Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2
=> 5(n - 1)n(n + 1) chia hết cho 10 (2)
Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.
Vậy n5 và n luôn có chữ số tận cùng giống nhau.
Chứng minh rằng với mọi n thuộc N thì n5 và n luôn có chữ số tận cùng giống nhau
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Theo mình là như thế
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Tự tìm nha
Chứng minh rằng với mọi số tự nhiên n và n lớn hơn 1 thì 5 mũ 2n +2 có chữ số tận cùng là 7
TẤT CẢ CÁC SỐ \(5^n\)ĐỀU CÓ TẬN CÙNG LÀ 5 THÌ 5+2 = 7
Chúng minh rằng với mọi n E N* thì:
8.2n+2n+1 có chữ số tận cùng là 0
Giúp mk câu dưới nữa nhé
Ta có:
8.2n+2n+1
=8.2n+2n.2
=2n.(8+2)=2n.10 luôn tận cùng bằng 0 (đpcm)
8.2n+2n+1
= 8.2n+2n.2
= 2n(8+2)
= 2n.10 luôn có tận cùng là 0 với mọi n thuộc N*
Vậy 8.2n+2n.2 luôn có tận cùng bằng 0 với mọi n thuộc N*
Chúc bạn học tốt!
ta có 8*2^n+2^n+1=8*2^n+2^n*2=2^n*(8+2)=2^n*10 luôn có tận cùng là 0
Với mọi n thuộc N* thì giá trị của biểu thức 8.2n + 2n+1 có tận cùng là chữ số......
với mọi n thuộc N thì giá trị của biểu thức 4^n+3 +4^n+2 -4^n+1-4^n luôn có số tận cùng là bao nhieu chữ số 0
cmr: Với mọi n thuộc N và n >1 thì \(5^{2^n}\)+ 2 có chữ số tận cùng là 7
Ta lun có 5^2^n tận cùng là 5 với mọi n^N và n >1
Do vậy 5^2^n+2=A5+2=A7. Vậy 5^2^n+2 tận cùng là 7
Chứng minh rằng với mọi số tự nhiên n thì n5 và n lun có chữ số tận cùng giống nhau
Giải
Ta có:n5 - n = n(n4 - 1)
= n(n2 - 1)(n2 - 4 + 5)
= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)
= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)
Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)
Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2
=> 5(n - 1)n(n + 1) chia hết cho 10 (2)
Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.
Vậy n5 và n luôn có chữ số tận cùng giống nhau.\(\left(đpcm\right)\)
Chứng minh rằng \(n^{4k+1}\) và n có cùng chữ số tận cùng với mọi số tự nhiên n, k. Từ đó, tìm chữ số tận cùng của tổng: \(2^1+3^5+4^9+...+502^{2001}\)