Tìm số có 3 chữ số sao cho hiệu của số ấy và số viết theo thứ tự ngược lại là số chính phương
Tìm các số có 3 chữ số ,sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương
Gọi số cần tìm là abc (1<=a<=9;0<=b;c<=9)
Số viết ngược lại là cba.
Ta có:abc-cba=n2
=>(100a+10b+c)-(100c+10b+a)=n2
=>100a+10b+c-100c-10b-a=n2
=>(100a-a)+(10b-10b)+(c-100c)=n2
=>99a-99c=n2
=>99(a-c)=n2
=>32.11.(a-c)=n2
Để 11(a-c) là SCP thì a-c=11k2 nên a-c chia hết cho 11
Do đó a=c
KL:các số thỏa mãn có dạng là cba
Đúng 100%
Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương
Gọi abc là số thỏa mãn đề bài (0<a<9,-1<b,c<9, a,b,c là các số tự nhiên)
Theo đề bài, ta có:abc-cba=k2(là số tự nhiên)
Dễ thấy a\(\ge\)c:
TH1:a=c=>k2=0(thỏa mãn)=>abc={111;212;...;121;222;...;131;231;...)
TH2:a>c. Đặt a=c+k=>abc-cba=[(c+k).100+b.10+c]-(c.100+b.10+c+k)=k.100+k=k0k là số chính phương
Xét số kok=k.101 là số chính phương (Vô lí vì 101 là số nguyên tố)
Vậy các số abc thỏa mãn đề bài là {111;212;...;121;222;...;131;231;...}
Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm ba chữ số ấy viết theo thứ tự ngược lại là một số chính phương
TL:
gọi số có ba chữ số đó là abc (0<a; 0<a,b,c<9)
Ta có abc- cba =a.100 +b.10 +c-c .100 -b.10 -c = 99.a -99.c =99.(a-c) =9.11 (a-c)
Vì 9 = 3^2 nên để abc là số chính phương thì 11.(a-c) phải là số chính phương
=> a-c thuộc B (11) mà 0<a,c <9 do đó a-c<9 nên a-c = 0
=> a=c
nên số đó có dạng aba
Học tốt
gọi số có ba chữ số đó là abc (0<a; 0<a,b,c<9)
Ta có abc- cba =a.100 +b.10 +c-c .100 -b.10 -c = 99.a -99.c =99.(a-c) =9.11 (a-c)
Vì 9 = 3^2 nên để abc là số chính phương thì 11.(a-c) phải là số chính phương
=> a-c thuộc B (11) mà 0<a,c <9 do đó a-c<9 nên a-c = 0
=> a=c
nên số đó có dạng aba
tìm số có 2 chữ số sao cho hiệu của số ấy và số viết theo thứ tự ngược lại là số chính phương
Gọi số đó là ab (a,b là chữ số; a khác 0)
Theo bài ra ta có:
ab-ba=n2 (Với nϵN)
⇒ a.10+b-b.10-a = n2
⇒ 9a-9b = n2
⇒ 9.(a-b)=n2
⇒ a-b=9 ⇒ a=9,b=0 (vì a,b đều bé hơn 10)
Vậy số cần tìm là 90
Bạn Quang còn thiếu các trường hợp \(a-b\in\left\{0;1;4\right\}\) nữa. Các số có 2 chữ số \(\overline{ab}\) \(\left(a>b\right)\) mà \(a-b\in\left\{0;1;4;9\right\}\) thì \(\overline{ab}-\overline{ba}\) luôn là số chính phương.
Tìm số có ba chữ số , sao cho hiệu của số ấy và số gồm ba chữ số ấy viết theo thứ tự ngược lại là một số chính phương
refer
gọi số có ba chữ số đó là abc (0<a; 0<a,b,c<9)
Ta có abc- cba =a.100 +b.10 +c-c .100 -b.10 -c = 99.a -99.c =99.(a-c) =9.11 (a-c)
Vì 9 = 3^2 nên để abc là số chính phương thì 11.(a-c) phải là số chính phương
=> a-c thuộc B (11) mà 0<a,c <9 do đó a-c<9 nên a-c = 0
=> a=c
nên số đó có dạng aba
Refer:
Gọi số có 3 chữ số đó là abc ( Điều kiện: 0 < a < 10 ; -1 < b,c < 10) , số ngược lại là cba ( Điều kiện: 0< c < 10 ; -1< b,a < 10)
abc - cba = 100a +10b +c - 100c - 10b - a = 99a +0b - 99c
Từ trên => 0b = 0 với mọi b
=> b= 0
Còn lại 99a - 99c =99.(a - c)
để cho hiệu là số chính phương thì a - c là số chính phương
Để thỏa điều kiện trên thì a - c = 1;3;5;7 vì 1;3;5;7 là số chính phương
tìm số có 3 chữ số sao cho hiệu của số ấy và số viết theo thứ tự ngược lại là số chính phương
gọi số có 3 chữ số phải tìm là abc ( 1 \(\le\)a \(\le\)9 ; 0 \(\le\)b , c \(\le\)9 ), số viết ngược lại là cba
Ta có :
abc - cba = n2 ( n \(\in\)N )
( 100a + 10b + c ) - ( 100c + 10b + a ) = n2
99a - 99c = n2
32 . 11 . ( a - c ) = n2
Để 11 . ( a - c ) là số chính phương, ta phải có a - c = 11 . k2 nên a - c \(⋮\)11. Do đó : a = c.
các số thỏa mãn bài toán có dạng aba
Tìm số có ba chữ số, sao cho hiệu của số ấy và số gồm ba chữ số ấy viết theo thứ tự ngược lại là một số chính phương.
bạn tham khảo tại đây nha : Câu hỏi của Thanh Tâm - Toán lớp 8 - Học toán với OnlineMath
< https://olm.vn/hoi-dap/detail/69055687002.html >
.
Gọi số có 3 chữ số đó là abc ( Điều kiện: 0 < a < 10 ; -1 < b,c < 10)
Số ngược lại là cba ( Điều kiện: 0< c < 10 ; -1< b,a < 10)
abc - cba = 100a +10b +c - 100c - 10b - a = 99a +0b - 99c
Từ trên => 0b = 0 với mọi b
=> b= 0
Còn lại 99a - 99c =99.(a - c)
Để cho hiệu là số chính phương thì a - c là số chính phương
Để thỏa điều kiện trên thì a - c = 1;3;5;7 vì 1;3;5;7 là số chính phương
Làm tiếp nha!!
Goi so co ba chu so do la :abc(0<a;0<a;b;c<9)
Ta co:abc-cba=a.100+b.10+c-c.100-b.10-c=99.a-99.c=99.(a-c)=9.11.(a-c)
Vi 9=32 nen de abc la so chinh phuong thi 11.(a-c) phai la so chinh phuong
=>\(a-c\in b\left(11\right)\)ma 0<a,c<9 nen a-c=0
=>a=c
Hoktot
^o^
Tìm các số có ba chữ số, sao cho hiệu của số ấy và số gồm 3 chữ số viết theo thứ tự ngược lại là một số chính phương.
Tìm số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy theo thứ tự ngược lại là số chính phương
Gọi số có 3 chữ số đó là abc (0<a;0<a,b,c<9)
Ta có:abc-cba=a.100+b.10+c-c.100-b.10-c=99.a-99.c=99.(a-c)=9.11.(a-c)
Vì 9=32 nên để abc là số chính phương thì 11.(a-c) phải là số chính phương
=>a-c \(\in B\left(11\right)\)mà 0<a,c<9 do đó a-c <9 nên a-c=0
=>a=c
nên số đó có dạng aba
abc - cba =99(a-c) =9. 11(a-c) la so chinh phuong
=> 11( a-c ) la so chinh phuong => a -c =0 ( a- c khong the = 11)
Vay a = c
de bai sai ( Hieu = tong hay hon )