Tam giác ABC có M là trung điểm của BC. Biết AB=6cm, AC=10cm,AM=4cm. Chứng minh: góc MAB=900. Giúp mik vs nhoa !!!!!
Tam giác ABC có M là trung điểm của BC. Biết AB=6cm, AC=10cm,AM=4cm. Chứng minh: góc MAB=90 độ
Goi G là diem doi xung voi A qua M.
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh)
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2)
Suy ra goc AGC=90°
Suy ra goc MAB=90° (AB//CG).
đã chứng minh xong
_______HẾT_________
Gọi L là điểm đối xứng với A qua M.
Dễ dàng cm ABGC là hình bình hành \(\Rightarrow\)AB=CG=6 cm
Lại có AG=8 cm, áp dụng định lý Pitago đảo vào tam giác ACG, ta suy ra tam giác AGC vuông tại G(\(8^2+6^2=10^2\)
Lại có tam giac BAG= tam giác CGA . Do đó góc MAB= 90 độ
Gọi G là điểm đối xứng qua với A qua M.
Vì AM=4⇒ AG=AM+MG=4+4=8(cm)
Vì AB=6⇒CG=6
⇒ABGC là hình bình hành.
Áp dụng định lý pitago ở ΔACG có:
AC2=GA2+GC2
⇒102=62+82
⇒100=100 (đúng)
⇒ΔAGC vuông tại G
⇒AGCˆ=90o
⇒MABˆ=90o (do A đối xứng với G qua M)
Tam giác ABC có M là trung điểm của BC. Biết AB=6cm, AC=10cm,AM=4cm. Chứng minh: góc MAB=90 độ
Cho tam giác ABC, gọi M là trung điểm BC. Biết AB = 6cm, AC = 10cm, AM = 4cm. Chứng minh góc MAB = 90o.
Hạ \(AH\perp BC\) tại H. Đặt \(MB=MC=x;HM=y;AH=h\)
Theo định lý Pythagoras: \(\left\{{}\begin{matrix}AH^2+HM^2=AM^2\\AH^2+BH^2=AB^2\\AH^2+CH^2=AC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}h^2+y^2=16\\h^2+\left(x-y\right)^2=36\\h^2+\left(x+y\right)^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}h^2+y^2=16\\h^2+x^2+y^2-2xy=36\\h^2+x^2+y^2+2xy=100\end{matrix}\right.\)
Cộng theo vế của 2 pt thứ 2 và thứ 3 của hệ này, ta được:
\(2\left(h^2+x^2+y^2\right)=136\)
\(\Leftrightarrow x^2+\left(h^2+y^2\right)=68\)
\(\Leftrightarrow x^2+16=68\)
\(\Leftrightarrow x^2=52\) hay \(BM^2=52\)
Mà ta lại có \(AB^2+AM^2=6^2+4^2=52\)
\(\Rightarrow AB^2+AM^2=BM^2\) \(\Rightarrow\Delta ABM\) vuông tại A \(\Rightarrow\) đpcm
Gọi H là điểm đối xứng với A qua M
Xét tam giác AMB và tam giác HMC có:
\(\left\{{}\begin{matrix}HM=AM\\\widehat{AMB}=\widehat{HMC}\\MB=MC\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta HMC\left(c.g.c\right)\)
\(\Rightarrow HC=AB=6cm\)
Xét tam giác HAC có:
\(AH^2+HC^2=10^2\left(8^2+6^2=10^2\right)\)
\(\Rightarrow\widehat{AHC}=90^o\)
Mà \(\Delta AMB=\Delta HMC\)
\(\Rightarrow\widehat{MAB}=\widehat{MHC}=90^o\left(đpcm\right)\)
Cho tam giác ABC có AB=6cm , AC=10cm và M là trung điểm cạnh BC sao cho AM=4cm . Chứng minh rằng : MAB=90độ
tam giác ABC, M là trung điểm của BC . vẽ AB = 6cm, AC= 10 cm , AM= 4cm. chứng minh góc MAB =90 độ
Tam giác ABC có M là trung điểm của BC. Biết AB=6cm, AC=10cm,AM=4cm. Chứng minh: góc MAB=900. Giúp mik vs nha ! Mik đang cần gấp !!!!
Hình bạn tự vẽ nha!
Goi G là diem doi xung voi A qua M.
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh)
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2)
Suy ra goc AGC=90°
Suy ra goc MAB=90° (AB//CG).
Gọi G là điểm đối xứng qua với A qua M.
Vì \(AM=4\Rightarrow\) \(AG=AM+MG=4+4=8\left(cm\right)\)
Vì \(AB=6\Rightarrow CG=6\)
\(\Rightarrow ABGC\) là hình bình hành.
Áp dụng định lý pitago ở \(\Delta ACG\) có:
\(AC^2=GA^2+GC^2\)
\(\Rightarrow10^2=6^2+8^2\)
\(\Rightarrow100=100\) (đúng)
\(\Rightarrow\Delta AGC\) vuông tại G
\(\Rightarrow\widehat{AGC}=90^o\)
\(\Rightarrow\widehat{MAB}=90^o\) (do A đối xứng với G qua M)
Cho tam giác ABC có AB = AC , M là trung điểm của BC.
a ) Chứng minh : Tam giác ABM bằng tam giác ACM .
b) Chứng minh : AM là tia phân giác của góc BAC.
c ) Chứng minh : AM vuông góc với BC tại M. giúp mik vs
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (giả thiết)
\(AM\) là cạnh chung
\(BM=CM\) (giả thiết)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
Tam giác ABC có M là trung điểm của BC
a) Biết góc MAB>góc MAC. Chứng Minh :AC>AB
b) Biết AC > AB chứng minh góc MAB > góc MAC
Cho tam giác ABC có AB = 3,6 cm , AC = 4,8 cm trên AB lấy M trên AC lấy N sao cho AM = 3cm ,AN =4cm .Chứng minh
a, MN//BC
b, Gọi D là trung điểm BC . K là giao điểm của AD và MN . Chứng minh K là trung điểm MN
giúp mik vs
a: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
b: Xét ΔABD có
MK//BD
nên \(\dfrac{MK}{BD}=\dfrac{AM}{AB}=\dfrac{5}{6}\left(1\right)\)
Xét ΔACD có
KN//DC
nên \(\dfrac{KN}{DC}=\dfrac{AN}{AC}=\dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{KM}{BD}=\dfrac{KN}{DC}\)
mà BD=DC
nên KM=KN
hay K là trung điểm của MN