Cho tam giác ABC , BC = 2BA . BD là tia phân giác của tam giác ABC . Chứng minh DC = 2DA
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
Bài tập 6: Cho tam giác ABC có BC = 2BA. BD là đường phân giác. Chứng minh : CD = 2DA.
Gọi đường tròn (O) đi qua ba điểm A, B, C. Đường phân giác của cắt cung nhỏ AC tại E. Xét hai tam giác ABE và DBC, chúng có: (gt), (hai góc nội tiếp cùng chắn cung AB).
Vậy ∆ ABE ~ ∆ DBC => =
=> AB.BC = BD.BE = (BD + DE).BD = BD2 + DE.BD
=> BD2 = AB.BC - DE.BD (1)
Dễ dàng có ∆ DBC ~ ∆ DAE => = => DE.BD = AD.DC (2).
Thay (2) vài (1) ta có điều phải chứng minh.
Từ A dựng đường thẳng //với BC cắt BD kéo dài tại E
\(\Rightarrow\widehat{E_1}=\widehat{B_2}\) (góc so le trong)
Mà \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}\) => tg ABE cân tại A => BA=AE (1)
Áp dụng hệ quả định lý ta let đối với tam giác ta có
\(\frac{CD}{DA}=\frac{BC}{AE}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{CD}{DA}=\frac{BC}{BA}=\frac{2BA}{BA}=2\Rightarrow CD=2DA\)
Cho tg ABC có BC = 2BA. Tia phân giác BD. CMR DC = 2DA
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
Xét ΔBAC có BD là phân giác
nên DA/DC=BA/BC=1/2
=>DC=2DA
Bài 2: Cho tam giác ABC có góc a = 90độ và BC = 2AB, E là trung điểm của BC. Tia phân giác của góc B cắt cạnh AC ở D. a . Chứng minh DB là tia phân giác của góc ADE; b . Chứng minh BD = DC ; c . Tính góc B và góc C của tam giác ABC.
cho tam giác ABC có AB < BC. trên tia BA lấy điểm D sao cho BC = BD. Tia phân giác B cắt AC ở E. Gọi K là trung điểm của DC
a) chứng minh tam giác BED = tam giác BEC
b) chứng minh EK vuông góc với DC
c) kẻ AH vuông góc với DC, ( H thuộc DC ). tam giác ABC cần thêm điều kiện gì để góc DAH = 45 độ
a: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
b: Ta có: ΔBDE=ΔBCE
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
Ta có: BD=BC
=>B nằm trên đường trung trực của CD(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của CD(3)
Từ (1),(2),(3) suy ra B,E,K thẳng hàng
=>B,E,K cùng nằm trên đường trung trực của DC
=>EK\(\perp\)DC
c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)
nên ΔAHD vuông cân tại H
Xét ΔBDC có BD=BC
nên ΔBCD cân tại B
mà \(\widehat{BDC}=45^0\)
nên ΔBCD vuông cân tại B
=>\(\widehat{ABC}=90^0\)
Cho \(\Delta ABC\)có \(BC=2BA\). \(BD\)là đường phân giác của \(\Delta ABC\). Chứng minh \(DC=2DA\)
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
cho tam giác ABC vuông tại A , tia phân giác BD của góc ABC cắt AC tại D . Vẽ DH vuông góc với BC ( H thuộc BC ) .
a) Chứng minh rằng tam giác ABD = tam giác HBD . Từ đó suy ra BD là trung trực của AH
b) Chứng minh AD < DC
A)XÉT \(\Delta ABD\)VÀ\(\Delta HBD\)CÓ
\(\widehat{BAD}=\widehat{BHD}=90^o\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta HBD\)(CẠNH HUYỀN - GÓC NHỌN ) ( ĐPCM)
GỌI I LÀ GIAO ĐIỂM CỦA BD VÀ AH
XÉT \(\Delta ABI\)VÀ\(\Delta HBI\)CÓ
\(AB=BH\left(\Delta ABD=\Delta HBD\right)\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BI LÀ CẠNH CHUNG
=>\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
\(\Rightarrow\widehat{AIB}=\widehat{HIB}\)( HAI GÓC TƯƠNG ỨNG)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{AIB}=\widehat{HIB}=\frac{180^o}{2}=90^o\left(1\right)\)
mà\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
=> AI=HI( HAI CẠNH TƯƠNG ỨNG ) (2)
TỪ 1 VÀ 2 => BI LÀ ĐƯỜNG TRUNG TRỰC CỦA AH HAY BD LÀ ĐƯỜNG TRUNG TRỰC CỦA AH(ĐPCM)
B)
b)
Vì \(\Delta\)DBA =\(\Delta\) DBH ( cm ở câu a )
=) AD = DH
Xét\(\Delta\)DHC ( DHC = 90 ) có :
DC là cạnh huyền
\(\Rightarrow\) DC là cạnh lớn nhất
\(\Rightarrow DC>DH\)
mà DH = AD
\(\Rightarrow AD< DC\)
a, Xét △ABD vuông tại A và △HBD vuông tại H
Có: BD là cạnh chung
ABD = HBD (gt)
=> △ABD = △HBD (ch-gn)
=> AB = BH (2 cạnh tương ứng) => B thuộc đường trung trực của AH
và AD = HD (2 cạnh tương ứng) => D thuộc đường trung trực của AH
=> BD là đường trung trực của AH
b, Xét △HDC vuông tại H có: DC > DH (quan hệ giữa đường xiên và đường vuông góc)
=> DC > AD
a) Xét \(\Delta ABD\)và \(\Delta HBD\)có :
\(\widehat{BAD}=\widehat{AHD}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta HBD\left(ch-gn\right)\)
\(\Rightarrow AB=BH\)( 2 cạnh tương ứng ) \(\Rightarrow\)B thuộc đường trung trực của AH \(\left(1\right)\)
và \(AD=HD\)( 2 cạnh tương ứng ) \(\Rightarrow\)D thuộc đường trung trực của AH \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\)BD là trung trực của AH
b) Xét \(\Delta DHC\)vuông tại H , ta có :
\(DH< DC\left(cgv< ch\right)\)
mà \(AD=HD\left(cmt\right)\)
\(\Rightarrow AD< DC\)
b6:
Giả thiết : AB=BD; BC là tia phân giác của B
Kết luận : chứng minh rằng
a; tam giác ABC= tam giác DBC
b; AC=DC
a) Xét ΔABC và ΔDBC có:
AB=BC (gt)
BC chung
∠B1 = ∠B2
⇒ ΔABC = ΔDBC (c-g-c)
b) Từ kết quả câu a, ta có: ΔABC = ΔDBC
⇒ AC = DC (2 cạnh tương ứng)