B=(a+2b)^2-(2b-a)^2+4ab-2a^2+10
mong các bạn giúp đỡ mình
kết quả rút gọn của biểu thức M=( a + b )^2 - (a - b )^2:
A. 4ab B. 0 C.-4ab D. 2a^2 + 2b^2
NẾU BẠN NÀO LÀM GIÚP MÌNH THÌ GIẢI HẲN THÀNH BÀI NHÉ!
MÌNH SẼ CẢM ƠN = 1 TICK
\(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b-a+b\right)\left(a+b-a-b\right)\)
\(=2a.2b=4ab\)
=> câu trả lời là a . 4ab
Cho a/b = c/d, chứng minh rằng 2a-3c/2b-3d= 2a+3c/2b+3d
Mong các bạn giúp đỡ!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\)
Vậy ta có đpcm
chứng minh cái đống này giúp mình với mai mình nộp rồi
a)(a^4+b^4)(a^6+b^6)<_2(a^10+b^10)
b)a^2/4+2b^2+2c^2+1>=ab-ac+2bc+2b
c)a^2+4b^2+4c^2+4ac>=4ab+8bc
d)4a^4+5a^2>=8a^3+2a-1
Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:
a.
\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)
\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)
\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)
c.
\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)
d.
\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)
(a+b)2-(a-b)2
=[(a+b)+(a-b)].[(a+b)-(a-b)]
=2a.2b=4ab
Các bạn giải thích giùm mk đi!
hằng đẳng thức số 3 nha
Gọi
( a + b )2 = c
( a - b )2 = d
= c2 - d2
Áp dụng hằng đẳng thức số a2 - b2 = ( a + b ) ( a - b ) ta có :
c2 - d2
= ( c - d ) ( c + d )
= [ ( a +b ) - ( a - b ) ] . [ ( a + b ) - ( a - b ) ]
= 2a . 2b
= 4ab
Study well
bn giải thích tại sao lại bằng 2a.2b zậy?
giải
[ ( a + b ) + ( a - b ) ] . [ ( a + b ) - ( a - b ) ]
= [ a + b + a - b ] . [ a + b - a + b ]
= ( a + a ) ( b + b )
= 2a . 2b = 4ab
cho a+b+c=0 .
Chứng minh a, \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)=1
b, \(\frac{4bc-a^2}{bc+2a^2}+\frac{4ab-c^2}{ab+2c^2}+\frac{4ac-b^2}{ac+2b^2}\)=3
a/ \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)
\(=\frac{4bc-\left(b+c\right)^2}{bc+2\left(b+c\right)^2}.\frac{4\left(-b-c\right)b-c^2}{\left(-b-c\right)b+2c^2}.\frac{4\left(-b-c\right)c-b^2}{\left(-b-c\right)c+2b^2}\)
\(=\frac{-\left(b-c\right)^2}{\left(c+2b\right)\left(b+2c\right)}.\frac{-\left(c+2b\right)^2}{-\left(b-c\right)\left(b+2c\right)}.\frac{-\left(b+2c\right)^2}{\left(b-c\right)\left(c+2b\right)}=1\)
Vì a>0; b>0 nên a + b \geq 4ab1+ab4ab1+ab
\Leftrightarrow (a + b)(1 + ab)\geq 4ab
\Leftrightarrow a + b + a^2b+ab^2\geq 4ab
\Leftrightarrow a + b + a^b + ab^2 - 4ab\geq 0
\Leftrightarrow (a^2b - 2ab + b) + (ab^2 - 2ab +a) \geq 0
\Leftrightarrow b(a^2 -2a + 1) + a(b^2 - 2B + 1)\geq 0
\Leftrightarrow b(a-1)^2 + a(b-1)^2\geq 0
\Rightarrow Bất đẳng thức đúng\Rightarrow đpcm.
Tính giá trị biểu thức
Q= ( x -a / x - b )3 - x2 - 2a + b / x + a -2b với x= a + b /2
P=x + 2a / x - 2a + x + 2b / x - 2b với x = 4ab / a +b
Thu gọn đa thức sau:
a) A= \(5xy - y^2 - 2xy +4xy + 3x -2y\)
b) B= \(\dfrac{1}{2}ab^2 - \dfrac{7}{8}ab^2 + \dfrac{3}{4}a^2 b - \dfrac{3}{8}a^2b - \dfrac{1}{2}ab^2\)
c) C= \(2a^2b - 8b^2 + 5a^2b + 5c^2 - 3b^2 + 4c^2\)
Giúp mình với ạ. Cảm ơn các bạn nhiều!!
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
\(A=5xy-y^2-2xy+4xy+3x-2y\)
\(A=-y^2+7xy+3x-2y\)
\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)
\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)
\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)
\(C=7a^2b-11b^2+9c^2\)
\(A=7xy-y^2+3x-2y\)
\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)
\(C=7a^2b-11b^2+9c^2\)
(2a^2+a^2)(2b^2-b)-ab(4ab-1) chia hết cho 2 với a,b thuộc N