Rút gọn biểu thức:
x(x + y)(x2+y2)(x4+y4)(x8+y8)(x - y) + xy16
rút gọn phân thức
1 . 8x3-125 / 3(x-3)-(x-3)(8-4x)
2 . x4-y4 / y3-x3
3 . x10-x8-x7-x6-x5-x4-x3-x2+1 / x30+x24+x18+x12+x6+1
2: \(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)
Rút gọn biểu thức A = 1 1 - x + 1 1 + x + 2 1 + x 2 + 4 1 + x 4 + 8 1 + x 8
B2: Rút gọn biểu thức sau:
a, (x + 3)2 - x(3x + 1)2 + (2x + 1)(4x2 -2x +1)=28
c, ( x2 - 1) - (x4 + x2 + 1)(x2 - 1) = 0
B3: Tính giá trị của biểu thức:
a, ( x - 1)(x -2)(1 + x + x2)(4 + 2x + x2) với x = 1
b, (x - 1)3 - 4x(x + 1)(x - 1) + 3(x - 1)(x2 + x + 1) với x= -2
B5: C/m biểu thức sau ko phụ thuộc vào giá trị của biến:
y(x2 - y2)(x2 + y2) - y(x4 - y4)
Giúp mình vs tuần sau jk học r T.T
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
1, Cho biết x+y=15 và xy=50. Tính giá trị của các biểu thức:
a. A=x2+y2
b. B=x4+y4
c. C=x2-y2
2, Cho biết x-y=15 và xy=50. Hãy tính x2+y2 ; x2-y2 rồi từ đó suy ra kết quả của x4-y4.
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)
Cho biết x + y = 15 và xy = 50. Tính giá trị của các biểu thức:
a) A = x2 + y2
b) B = x4 + y4
c) C = x2 − y2
Nếu thay giả thiết thành x − y = 15 và xy = 50. Hãy tính x2 + y2; x2 − y2. Từ đó suy ra kết quả của x4 − y4.
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)
b:\(B=x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=125^2-2\cdot2500\)
=10625
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)
Chứng minh: ( x 3 + x 2 y + x y 2 + y 3 )(x - y) = x 4 – y 4
Ta có: VT = ( x 3 + x 2 y + x y 2 + y 3 )(x - y)
= ( x- y). ( x 3 + x 2 y + x y 2 + y 3 ).
= x. ( x 3 + x 2 y + x y 2 + y 3 ) - y( x 3 + x 2 y + x y 2 + y 3 )
= x 4 + x 3 y + x 2 y 2 + x y 3 – x 3 y – x 2 y 2 – x y 3 – y 4
= x 4 – y 4 = VP (đpcm)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)