Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kaneki Ken
Xem chi tiết
Bảo Ngọc
Xem chi tiết
Học tốt
Xem chi tiết
Akai Haruma
24 tháng 12 2018 lúc 23:49

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)

\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)

\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)

Cộng theo vế và rút gọn:

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Văn Trọng Khôi
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Anh Đỗ Nguyễn Thu
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
Phùng Minh Quân
16 tháng 11 2018 lúc 17:57

\(\frac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}=\frac{a^4}{\left[\left(a-b\right)\left(a+b\right)+c^2\right]\left[\left(a-c\right)\left(a+c\right)+b^2\right]}\)

\(\frac{a^4}{\left[-c\left(a-b\right)+c^2\right]\left[-b\left(a-c\right)+b^2\right]}=\frac{a^4}{4bc\left(b+c\right)^2}=\frac{a^4}{4a^2bc}\)

Tương tự với 2 phân thức còn lại, ta cũng có : \(\frac{b^4}{b^4-\left(c^2-a^2\right)^2}=\frac{b^4}{4ab^2c};\frac{c^4}{c^4-\left(a^2-b^2\right)^2}=\frac{c^4}{4abc^2}\)

\(VT=\frac{a^4}{4a^2bc}+\frac{b^4}{4ab^2c}+\frac{c^4}{4abc^2}=\frac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}=\frac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\)

\(VT=\frac{a^3+b^3+c^3}{4abc}\)

Mà \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) ( tự cm ) 

\(\Rightarrow\)\(VT=\frac{3abc}{4abc}=\frac{3}{4}\) ( đpcm ) 

Chúc bạn học tốt ~ 

dbrby
Xem chi tiết
Tobot Z
Xem chi tiết
Akai Haruma
6 tháng 3 2019 lúc 1:15

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{(\frac{a^2}{b})^2}{c+2}+\frac{(\frac{b^2}{c})^2}{a+2}+\frac{(\frac{c^2}{a})^2}{b+2}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{c+2+a+2+b+2}=\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{a+b+c+6}\)

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+6}\)

Đặt \(t=a+b+c\). Áp dụng BĐT AM-GM: \(t=a+b+c\geq 3\sqrt[3]{abc}=3\)

Ta có:

\(\frac{(a+b+c)^2}{a+b+c+6}=\frac{t^2}{t+6}=\frac{t^2-t-6}{t+6}+1=\frac{(t-3)(t+2)}{t+6}+1\geq 1\) với mọi $t\geq 3$

Do đó: \(\text{VT}\geq \frac{(a+b+c)^2}{a+b+c+6}\geq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Akai Haruma
6 tháng 3 2019 lúc 1:21

Cách khác:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{b^2(c+2)}+\frac{c+2}{9}+\frac{b}{3}+\frac{b}{3}\geq 4\sqrt[4]{\frac{a^4}{81}}=\frac{4}{3}a\)

\(\frac{b^4}{c^2(a+2)}+\frac{a+2}{9}+\frac{c}{3}+\frac{c}{3}\geq 4\sqrt[4]{\frac{b^4}{81}}=\frac{4}{3}b\)

\(\frac{c^4}{a^2(b+2)}+\frac{b+2}{9}+\frac{a}{3}+\frac{a}{3}\geq 4\sqrt[4]{\frac{c^4}{81}}=\frac{4}{3}c\)

Cộng theo vế và rút gọn thu được:

\(\frac{a^4}{b^2(c+2)}+\frac{b^4}{c^2(a+2)}+\frac{c^4}{a^2(b+2)}\geq \frac{5}{9}(a+b+c)-\frac{2}{3} \)

\(\geq \frac{5}{9}.3\sqrt[3]{abc}-\frac{2}{3}(\text{AM-GM})=\frac{5}{9}.3-\frac{2}{3}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$