tìm số nguyên tố p sao cho 2p+1 và 4p+1 cũng là số nguyên tố
Tìm số nguyên tố P sao cho các số sau cũng là số nguyên tố
a) 2p-1 và 4p-1
b) 2p+1 và 4p+1
b,
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Tìm số nguyên tố p sao cho 2p-1, 4p-1 cũng là số nguyên tố
Do 2p - 1 lẻ và 4p - 1 lẻ nên p chẵn
Vậy p = 2
Dùng phương pháp đánh giá em nhá.
Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)
p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)
Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)
p = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)
p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)
Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)
Từ những phân tích trên ta có p = 2; 3
Kết luận: p \(\in\) {2; 3}
tìm số nguyên tố p sao cho: 2p+1, 4p+1 cũng là số nguyên tố
Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.
Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.
Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)
Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.
Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.
Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
Tìm mọi số nguyên tố sao cho:
a) p+2 và p+4 cũng là số nguyên tố
b) p+10 và p+14 cũng là số nguyên tố
c) p+1;p+2;p+5 cũng là số nguyên tố
d) 2p+1 và 4p+1 là số nguyên tố
a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố
nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2
với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số
với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số
Vậy p=3 thỏa mãn đề bài
các phần còn lại tương tự
Cho p là số nguyên tố (p > 3) và 2p+1 cũng là số nguyên tố. Hỏi 4p+1 là số nguyên tố hay hợp số? Vì sao?
Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))
Thay p=3k+1 vào 2p+1 ta có:
2p+1=2(3k+1)+1=6k+2+1=6k+3
Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)
=> 2p+1 là hợp số (loại)
Thay p=3k+2 vào 2p+1 ta có:
2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)
Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
p và 2p+1 nguyên tố
Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
Xét p chia hết cho 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3
Cho p là số nguyên tố lớn hơn 3 và 2p+1 cũng là một số nguyên tố, thì 4p+1 là số nguyên tố hay hợp số? Vì sao?
Vì p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2
Với p = 3k+1 => 2p+1 = 2(3k+1) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\) 3 và lớn hơn 3
=> 2p+1 là hợp số (loại)
=> p chỉ có dạng 3k+2
Với p = 3k+2 => 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 \(⋮\) 3 và lớn hơn 3
=> 4p+1 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là một số nguyên tố thì 4p+1 là hợp số.
CHO p LÀ MỘT SỐ NGUYÊN TỐ LỚN HƠN 3 VÀ 2p+1 CŨNG LÀ MỘT SỐ NGUYÊN TỐ , THÌ 4p+1 LÀ SỐ NGUYÊN TỐ HAY HỢP SỐ ? VÌ SAO ?
Vì p là số nguyê tố lớn hơn 3 nên p có 1 trong 2 dạng: 3k+1 và 3k+2
+) nếu p = 3k+1 thì 2p+1 = 6k+3, chia hết cho 3 nên 2p+1 là hợp số(loại)
=>p có dạng 3k+2
=>4p+1 = 12k + 9 , chia hết cho 3
=> 4p+1 là hợp số
Vậy 4p+1 là hợp số