Ai giúp mình với
A=10^2022-1 chứng minh A chia hết cho 11
Mọi người giúp mình với ạ
A= 75.( 4^2023 + 4^2022 +...+ 4^2 + 5) + 25. Chứng minh rằng A chia hết cho 4^2024. Giúp mình với ạ, cảm ơn nhiều.
Có tồn tại số tự nhiên nào để:
n10 +1 chia hết cho 10
Mọi người giúp mình với ạ. Mình đang gấp
Ai làm đc mình tick cho
Có đó bạn. Nếu bạn lấy bất kì số \(n\) nào có dạng \(10k\pm3\) (tức là chia 10 dư 3 hoặc dư 7) thì \(n^{10}+1\) sẽ chia hết cho 10. Ví dụ:
\(7=10.1-3\Rightarrow7^{10}+1=282475250⋮10\)
không tồn tại số tự nhiên n nào để n10 + 1 chia hết cho 10.
mọi người ơi giúp mình với
2. chứng minh rằng với mọi STN n
a)7 mũ 4n-1 chia hết cho 5
làm đại, ko bt đúng ko nữa
74n-1=\(\dfrac{1}{7}\).74n=14n ko chia hết cho 5
Chứng minh:
2+2^2+2^3+2^4+........+2^2022 chia hết cho 7.
Giúp mình bài này với ạ.
Đặt A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²²
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2²⁰²⁰ + 2²⁰²¹ + 2²⁰²²)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2²⁰²⁰.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2²⁰²⁰.7
= 7.(2 + 2⁴ + ... + 2²⁰²⁰) ⋮ 7
Vậy A ⋮ 7
4/ Chứng minh rằng :
a. 76 +75 – 74 chia hết cho 11 .bạn nào giúp mk với ạ .giải thích cho mình hiểu luôn với ạ mình tick ✔cho
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮11\)
Chứng minh rằng n(3n^2 + 2022) chia hết cho 9 với mọi số nguyên n
giúp mình với ạ
A=3n(n^2+674)
TH1: n=3k
=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9
TH2: n=3k+1
=>A=3(3k+1)(9k^2+6k+1+674)
=3(3k+1)(9k^2+6k+675)
=9(3k+1)(3k^2+2k+225) chia hết cho 9
TH3: n=3k+2
=>A=3(3k+2)(9k^2+12k+4+674)
=3(3k+2)(9k^2+12k+678)
=9(3k+2)(3k^2+4k+226) chia hết cho 9
Cho A=\(\frac{9}{10!}+\frac{10}{11!}+.....+\frac{999}{1000!}\)
Chứng minh A<\(\frac{1}{9!}\)
Nhờ mọi người giúp mình bài này với ạ
Mình cám ơn!!
Cho A=1 + 3 + 3mũ 2+ 3mũ 3+ ... + 3 mũ101. Chứng minh rằng A chia hết cho 13
Mọi Người Giúp Mình Câu Này Với Ạ! Mình đang cần gấp.
\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\\ A=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+...+3^{99}\right)=13\left(1+...+3^{99}\right)⋮13\)
Chứng minh rằng A = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2021 + 4^2022 chia hết cho 5
Giải giúp mình với mình đang gấp!!!!
Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x
A= 4+4\(^2\)+4\(^3\)+4\(^4\)+...+4\(^{2021}\)+4\(^{2022}\)⋮5
A=(4+4\(^2\))+(4\(^3\)+4\(^4\))+...+(4\(^{2021}\)+4\(^{2022}\))⋮5
A=4(1+4)+4\(^2\)(1+4)+...+4\(^{2021}\)(1+4)⋮5
A=4.5+4\(^2\).5+...+4\(^{2021}\).5⋮5
A=(4+4\(^2\)+...+4\(^{2021}\)).5⋮5
Vậy A⋮5
\(A=4+4^2+4^3+4^4+...+4^{2021}+4^{2022}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{2021}.5\)
\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)
Vậy \(A⋮5\)