Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuu
Xem chi tiết
nguyen thi be
Xem chi tiết
Hoàng Như Trâm
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 7 2021 lúc 23:10

Hàm có 3 cực trị khi \(-2\left(m+1\right)< 0\Leftrightarrow m>-1\)

\(y'=4x^3-4\left(m+1\right)x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=m\\x=-\sqrt{m+1}\Rightarrow y=-m^2-m-1\\x=\sqrt{m+1}\Rightarrow y=-m^2-m-1\end{matrix}\right.\)

Gọi 3 điểm cực trị là A, B, C với \(A\left(0;m\right)\) và \(B\left(\sqrt{m+1};-m^2-m+1\right)\)

Tam giác ABC cân tại A nên nó đều khi \(B=60^0\)

\(\Rightarrow tanB=tan60^0=\dfrac{y_A-y_B}{x_B}\Leftrightarrow\sqrt{3}=\dfrac{m^2+2m+1}{\sqrt{m+1}}\)

\(\Leftrightarrow\left(m+1\right)^3=3\Rightarrow m=\sqrt[3]{3}-1\)

Minh Hảo Nguyễn Thị
Xem chi tiết
lê thị ngọc anh
Xem chi tiết
phạm văn tuấn
10 tháng 4 2018 lúc 20:28

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

❊ Linh ♁ Cute ღ
10 tháng 4 2018 lúc 20:26

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

Shuu
Xem chi tiết
Chứ Hoàng Thiên Bình
Xem chi tiết
Đoàn Đức Hà
11 tháng 8 2021 lúc 9:49

\(y=x^4-2\left(m^2-m+1\right)x+m-1\)

\(y'=4x^3-4\left(m^2-m+1\right)x\)

\(y'=0\Leftrightarrow4x^3-4\left(m^2-m+1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{m^2-m+1}\end{cases}}\)

Khoảng cách giữa hai điểm cực tiểu là: 

\(2\sqrt{m^2-m+1}=2\sqrt{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge2\sqrt{\frac{3}{4}}\)

Dấu \(=\)khi \(m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\).

Khách vãng lai đã xóa
nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 9 2021 lúc 15:59

Hàm có 3 điểm cực trị khi và chỉ khi:

\(-m\left(m+1\right)< 0\Rightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)

Hà Mi
Xem chi tiết