3. Cho : \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\)và xy +yz + zx=11 . TÌM x,y,z
Tìm x,y,z trong các tỉ lệ thức sau: \(\frac{xy+1}{9}=\frac{xz+2}{15}=\frac{yz+3}{27}v\text{à}xy+yz+zx=11\)
Tham khảo:
Chúc bạn học tốt!
Tìm x,y,z : \(\frac{xy+1}{9}=\frac{xz+2}{15}\frac{yz+3}{27}vàxy+xz+yz=11\)
Tìm x,y,z biết :
\(\frac{xy+1}{9}+\frac{yz+2}{15}+\frac{xz+3}{27}\) và xy + yz + xz = 11
Áp dụng tính chất dãy tỷ số bằng nhau ta có :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\)= \(\frac{xy+1+yz+2+xz+3}{9+15+27}\) = \(\frac{xy+yz+xz+6}{51}\) (1)
Thay xy +yz + xz = 11 vào (1) ta được :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\) = \(\frac{11+6}{51}\) = \(\frac{1}{3}\) Do đó : xy = \(\frac{1}{3}\). 9 - 1 = 2 => x = \(\frac{2}{y}\) (2) yz = 3 xz = 6 => x = \(\frac{6}{z}\) (3) Từ (2),(3) => x = \(\frac{2}{y}\) = \(\frac{6}{z}\) => x2 = \(\frac{2}{y}\) . \(\frac{6}{z}\) = \(\frac{12}{yz}\) = \(\frac{12}{3}\) = 4 => x = \(\pm\) 2 *) Với x = 2 => y = 2:2 = 1 và z = 6 :2 = 3 *) Với x = -2 => y = 2 : (-2) = -1 và z = 6 : (-2) = -3 Vậy ( x;y;z ) bằng các cặp số sau : ( 2;1;3) hoặc (-2;-1;-3)1. Cho biểu thức B :
\(B=x^{2017}-2018.x^{2016}+2018.x^{2015}-2018.x^{2014}+...-2018.x^2+2018.x-1\)
TÍNH GIÁ TRỊ BIỂU THỨC VỚI x=2017
3. Cho : \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\)và xy +yz + zx=11 . TÌM x,y,z
TÌM X,Y,Z BIẾT XY+1/9=YZ+2/15=ZX+3/27 BVAF XY+YZ+ZX=11
Cho x,y,z là 3 số thực dương thảo mãn điều kiện xy+yz+zx=xyz
Tìm giá trị lướn nhất của biểu thức:
P=\(\sqrt{\frac{1}{xy}:\left(\frac{1}{z}+\frac{1}{xy}\right)}+\sqrt{\frac{1}{yz}:\left(\frac{1}{x}+\frac{1}{yz}\right)}+\sqrt{\frac{1}{xz}:\left(\frac{1}{y}+\frac{1}{xz}\right)}\)
chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c
đến đây thì tự làm tiếp đi
Tìm x,y,z biết : \(\frac{xy}{2}=\frac{2yz}{9}=\frac{xz}{8}\)và xy + yz + zx = 29
\(\frac{xy}{2}=\frac{yz}{4,5}=\frac{xz}{8}=\frac{xy+yz+xz}{2+4,5+8}=\frac{29}{14,5}=2\)
\(\Rightarrow xy=4,yz=9,xz=16\)
\(\Rightarrow\left(xy\right).\left(yz\right).\left(xz\right)=4.9.16\)
\(\Rightarrow\left(xyz\right)^2=2^2.3^2.4^2\Rightarrow\left(xyz\right)^2=24^2\Rightarrow\orbr{\begin{cases}xyz=24\\xyz=-24\end{cases}}\)
Nếu xyz = 24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(yz\right)=24:9=\frac{8}{3}\\y=\left(xyz\right):\left(xz\right)=24:16=\frac{3}{2}\\z=\left(xyz\right):\left(xy\right)=24:4=6\end{cases}}\)
Nếu xyz = -24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(xz\right)=-24:9=-\frac{8}{3}\\y=-24:16=-\frac{3}{2}\\z=-24:4=-6\end{cases}}\)
Tìm x;y;z biết
a) \(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
c) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=120
d) \(\frac{xy+1}{9}=\frac{yz+2}{15}=\frac{xz+3}{27}\) và xy+yz+xz=11
e) \(\frac{x+10}{7}=\frac{y+6}{9}=\frac{27-z}{11}\) và \(3x^2+7=199\)
Cho x,y,z là các số thực dương. Tìm Max
Q=\(\frac{xy}{x^2+xy+yz}+\frac{yz}{y^2+yz+xz}+\frac{zx}{z^2+zx+xy}\)
Bạn tham khảo: