Cho x,y,z>0 và x+y+z=3
CMR:
\(\frac{1}{4x^2+y^2+z^2}+\frac{1}{4y^2+x^2+z^2}+\frac{1}{4z^2+x^2+y^2}\le\frac{1}{2}\)
Cho x, y, z là 3 số dương (chứng minh hộ mình phần b) thôi)
a) \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) \(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=12\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
CMR : \(\frac{1}{4x+y+z}+\frac{1}{x+4y+z}+\frac{1}{x+y+4z}\le\frac{1}{6}\)
thế nào nhỉ ( :
Từ giả thiết => 1/x +1/y +1/z <= 1
A/d BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z ) và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x) + 1/4(1/y +1/x) + 1/4(1/x + 1/z))
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.
Cho x;y;z > 0 thỏa mãn x + y + z = 2
Tìm GTNN của \(P=\sqrt{4x^2+\frac{1}{x^2}}+\sqrt{4y^2+\frac{1}{y^2}}+\sqrt{4z^2+\frac{1}{z^2}}\)
Tìm x,y,z biết :
\(x=\frac{4z^2}{1+4z^2},y=\frac{4x^2}{1+4x^2},z=\frac{4y^2}{1+4y^2}\)
\(x=\frac{4}{1+4}=\frac{4}{5}=0,8\) \(z=\frac{4}{1+4}=\frac{4}{5}=0,8\)
\(y=\frac{4}{1+4}=\frac{4}{5}=0,8\)
PhungHuyHoang
Làm sai mà rút ra được kiểu đấy
Tìm x,y,z biết:
\(x=\frac{4x^2}{1+4z^2},y=\frac{4x^2}{1+4x^2},z=\frac{4y^2}{1+4y^2}\)
Cho x,y,z>0 và x+y+z=3. Tìm Min A = \(\frac{z}{\sqrt{x^2+5xy+4y^2}}+\frac{x}{\sqrt{y^2+5yz+4z^2}}+\frac{y}{\sqrt{z^2+5zx+4x^2}}\)
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)
\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)
\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)
\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)
t chỉ làm dc đến đây thôi :))
Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:
\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)
Tương tự : \(y^2z+y^2z+z^2x\ge3yz\); \(z^2x+z^2x+x^2y\ge3zx\)
Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)
\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Dấu '=' xảy ra khi x = y = z = 1
Do xyz=1. nên bđt cần chứng minh tường đương với
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)
Theo BĐT Bunhiacopsky ta có:
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)
Do vậy ta cần cm
\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)
BĐT trên là tổng của 3 BĐT sau:
\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)
\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)
\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)
ta có bđt trên tương đương với
\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)
Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm
dấu "=" xảy ra khi x=y=z=1
CHO \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng :\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=2\left(x^4y^4+y^4z^4+z^4x^4\right)\)
GIÚP MÌNH VỚI
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)
\(\Rightarrow yz+zx+xy=0\)
Vì:
\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)
Nên.....(tự kết luận nha)
giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :
vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)
-Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow xy+yz+zx=0\)
Đặt \(xy=a,yz=b,zx=c\) thì bài toán thành
Cho \(a+b+c=0\)chứng minh \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)
Ta có:
\(\left(a^2+b^2+c^2\right)^2-2\left(a^4+b^4+c^4\right)\)
\(=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
\(=c^2\left(a+b\right)^2+c^2\left(a-b\right)^2-\left(a^2-b^2\right)^2-c^4\)
\(=c^2\left[\left(a+b\right)^2-c^2\right]+\left(a-b\right)^2\left[c^2-\left(a+b\right)^2\right]\)
\(=c^2\left(a+b+c\right)\left(a+b-c\right)+\left(a-b\right)^2\left(a+b+c\right)\left(c-a-b\right)\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]=0\)
Vậy \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)
Cho x,y,z > 0 và x+y+z = \(\frac{3}{2}\).Tìm giá trị nhỏ nhất của \(T=\frac{x}{1+4y^2}+\frac{y}{1+4z^2}+\frac{z}{1+4y^2}\)
Sửa đề: \(T=\frac{x}{1+4y^2}+\frac{y}{1+4z^2}+\frac{z}{1+4x^2}\)
\(T=x-\frac{4xy^2}{1+4y^2}+y-\frac{4yz^2}{1+4z^2}+z-\frac{4zx^2}{1+4x^2}\)
\(T\ge x+y+z-\frac{4xy^2}{4y}-\frac{4yz^2}{4z}-\frac{4zx^2}{4x}\)
\(T\ge\frac{3}{2}-\left(xy+yz+zx\right)\ge\frac{3}{2}-\frac{1}{3}\left(x+y+z\right)^2=\frac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Cho x;y;z > 0 thỏa mãn xyz = 2
CMR: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\le\frac{1}{2}\)
Theo BĐT Cauchy cho 2 số dương, ta có:
\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)
\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)
Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)
\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)
\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)
\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)
\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)
\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)
Đẳng thức xảy ra khi x = y = 1; z = 2