Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
❤Firei_Star❤
Xem chi tiết
khanh cuong
27 tháng 12 2018 lúc 20:58

Giả sự b đúng thì => a có chữ số tận cùng là 1 

=> a + 51 = 52 ko phải số chính phương 

a - 38 = ( ...3) ko phải số chính phương 

=> a,c Sai ; b đúng 2 sia và ( Trái với đề bài ) 

Vậy b sai 

Từ đó lập luận và tìm a 

Chúc bạn học tốt

NTN vlogs
29 tháng 12 2018 lúc 18:24

Giả sự b đúng thì => a có chữ số tận cùng là 1 

=> a + 51 = 52 ko phải số chính phương 

a - 38 = ( ...3) ko phải số chính phương 

=> a,c Sai ; b đúng 2 sia và ( Trái với đề bài ) 

Vậy b sai 

em ơi
Xem chi tiết
Minh Nhân
15 tháng 1 2021 lúc 21:45

Nguyễn Bá Hoàng Minh
Xem chi tiết
Tiên Nữ Ngọn Lửa Rồng
Xem chi tiết
Shiba Inu
21 tháng 10 2017 lúc 11:29

lên google

Nguyễn Minh Ngọc
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2021 lúc 21:06

a.

\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

Do y và y+1 nguyên tố cùng nhau  \(\Rightarrow32⋮\left(y+1\right)^2\)

\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)

\(\Rightarrow...\)

b.

\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)

\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)

Lại có:

\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)

\(\Rightarrow4b+1⋮d\) (2)

 (1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)

Lê Quốc An
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
chu ngọc trâm anh
Xem chi tiết
Huỳnh Quang Sang
13 tháng 8 2019 lúc 20:09

a, Với n = 1 thì \(n^3-n+2=1^3-1+2=2\)

=> Không phải là số chính phương

Với n = 2 thì \(n^3-n+2=2^3-2+2=8-2+2=8\)

=> Không phải là số chính phương

Với n > 2 thì \(n^3-n+2\)không phải là số chính phương vì \(\left[n-1\right]^2< n^3-\left[n-2\right]< n^2\)

b, Với n = 1 thì \(n^4-n+2=1^4-1+2=2\)

=> Không phải là số chính phương

Với n = 2 thì \(n^4-n+2=2^4-2+2=16=4^2\)=> Là số chính phương

Với n > 2 thì \(\left[n^2-1\right]^2< n^4-\left[n-2\right]< \left[n^2\right]^2\)

=> Không phải là số chính phương

Vậy n = 2