cho tam giác EDF vuông tại E,EK là đường cao(K thuộc DF) .Biết ED=12cm,DF=20cm.Tính DK,EF,EK!!!
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
cho tam giác DEF vuông tại D kẻ đường phân giác EM của góc E (M thuộc DF) đường thẳng đi qua D và vuông góc với EM cắt EF tại K a) chứng minh ED=EK b) chứng minh EM là đường trung trực của DK c) so sánh MF và MK
a: Xét ΔEDK có
EM là đường cao
EM là đường phân giác
Do đó: ΔEDK cân tại E
b: Xét ΔEDM và ΔEKM có
ED=EK
\(\widehat{DEM}=\widehat{KEM}\)
EM chung
DO đó: ΔEDM=ΔEKM
Suy ra: DM=DK
mà ED=EK
nên EM là đường trung trực của DK
Cho tam giác DEF (gócE=90 độ) đuòng cao EK
Biết EF=12cm; DF=25cm
Tính ED,EF,DK,KF
Bài 1. vuông tại D, đường cao DK.
1) Biết DE = 12cm, EF = 20cm. Tính EK, FK, DK,DF.
Bài 1. Tam giác DEF vuông tại D, đường cao DK.
1) Biết DE = 12cm, EF = 20cm. Tính EK, FK, DK,DF.
2) Chứng minh : \(\dfrac{DE^2}{EK}=\dfrac{DF^2}{FK}\)
ta có
tam giác def vuông tại D có đường cao DK nên
DE^2=EK.EF =>EK=DE^2/EF=36/5
FK=EF-EK=64/5
DK^2=EK.FK=2304/25 =>DK=48/5
DF^2=KF.EF=256 =>DF=16
tick mik nha
1: Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow DF^2=20^2-12^2=256\)
hay DF=16(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền EF, ta được:
\(\left\{{}\begin{matrix}DK\cdot FE=DE\cdot DF\\DE^2=KE\cdot EF\\DF^2=KF\cdot FE\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DK=9.6\left(cm\right)\\KE=7.2\left(cm\right)\\KF=12,8\left(cm\right)\end{matrix}\right.\)
cho tam giác DEF vuông tại D có DE < DF, đường phân giác EM ( E thuộc DF ) , đường cao DH ( H thuộc EF) . EM cắt DH tại K
a) Chứng minh EHK đồng dạng EDM và góc EKH= góc EMD
b) Chứng minh EK/EM = DK/MF
c) Chứng minh HK.MF=DK2
cho tam giác DEK vuông tại E (EK < ED). Trên tia đối của tia EK lấy điểm F sao cho EF = EK a ) tam giác DEF = tam giác DEK
b) từ điểm E, kẻ đường thẳng d // DF và cắt DK tại M . C/m tam giác MEC cân
c) trên tia EMlấy điểm N sao cho MN=ME . C/m NK\(\perp\) EK
a) Xét ΔDEF vuông tại E và ΔDEK vuông tại E có
DE chung
EF=EK(gt)
Do đó: ΔDEF=ΔDEK(hai cạnh góc vuông)
Cho tam giác DEF vuông tại D, EK là tia phân giác của góc DEF ( K thuộc DF ). Trên tia EF lấy điểm H sao cho EH=ED.
a) Chứng minh tam giác EDK=tam giác EHK, từ đó chứng minh HK vuông góc với EF
b) Từ H kẻ đường thẳng vuông góc với DF, nó cắt DF tại I. Chứng minh HI // ED
Cho tam giác DEF vuông tại D, đường cao DK . Cho DK = 6cm, EK= 8cm. Tính DE, DF, EF,FK
trong \(\Delta DEF\) vuông tại D có
\(DK^2=EK.KF\)(đlý)\(\Rightarrow KF=\dfrac{DK^2}{EK}=\dfrac{6^2}{8}\)=4,5
ta có:EF=EK+KF=8+4,5=12,5
\(DE^2=EF.EK\left(đlý\right)\)=12,5.8=100\(\Rightarrow DE=10\)
\(DF^2=EF.KF\)(đlý)=12,5.4,5=56,25\(\Rightarrow\)DF=7,5
Cho DEF vuông tại E, đường cao EH. Cho biết DE = 15 cm và EF = 20 cm. a) Chứng minh rằng: EH. DF = ED. EF. Tính DF; EH. b) Kẻ HM vuông góc ED , HN vuông góc EF , Chứng minh tam giác EMN ~ EDF
c) trung tuyến EK của tam giác DEF cắt MN tại I , tính diện tích tam giác EIM ?