cho a,b,c là các số thực phân biệt , không âm thỏa mãn a2+b2+c2 =3 .Tìm giá trị nhỏ nhất của biểu thức :
S=\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)
Cho a ,b ,c là các số thực không âm thỏa manxcacs điều kiện : ab+bc+ca=3 và a>c .
Tìm giá trị nhỏ nhất của biểu thức : P= \(\frac{1}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{3}{\left(c+1\right)^2}\)
vì \(c\le a\)nên \(\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)^2}\)
\(VT\ge\frac{2}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{2}{\left(c+1\right)^2}\)
Áp dụng BĐT AM-GM: \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}\)
\(=\frac{a+b+c+3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a+b+c+3}{abc+a+b+c+4}\)(*)
Từ giả thiết: ab+bc+ca=3.Áp dụng BĐT AM-GM:\(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow abc\le1\)
và có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=9\)\(\Leftrightarrow a+b+c\ge3\)
\(\Rightarrow a+b+c\ge3\ge3abc\)
từ (*): \(\frac{a+b+c+3}{abc+a+b+c+4}\ge\frac{a+b+c+3}{\frac{a+b+c}{3}+a+b+c+4}=\frac{3\left(a+b+c+3\right)}{4\left(a+b+c\right)+12}=\frac{3}{4}\)
do đó \(VT\ge2.\frac{3}{4}=\frac{3}{2}\)
Dấu = xảy ra khi a=b=c=1
nguồn: Hữu Đạt
1.cho a,b,c là các số dương thảo man: a+b+c=1. Tìm giá trị lớn nhất của biểu thức:
Q=\(\dfrac{a\left(b+c\right)}{a+1}+\dfrac{b\left(c+a\right)}{b+1}+\dfrac{c\left(a+b\right)}{c+1}\)
2.cho a,b,c dương thỏa man: a2+b2+c2=1
���+���+���
cho 3 số thực a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức sau
\(P=\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\left(2+c\right)\left(3+a+b\right)\)
dang no giong bai bdt vap LHP chuyen nam 2017-2018
Cho số thực a, b không âm thỏa mãn a2+b2≤2
Tìm giá trị lớn nhất của biểu thức: C=\(\sqrt{a\left(29a+3b\right)}+\sqrt{b\left(29b+3a\right)}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$
$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$
$\Rightarrow C^2\leq 32.4$
$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức : \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Có cách UCT :)
\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)
Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..
Đẳng thức xảy ra khi a=b=c=2
Đó nhớ cho mình nha
cho 3 số thực dương a,b,c thỏa mãn a+b<_c. Tìm giá trị nhỏ nhất của biểu thức\(P=\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
3. Áp dụng cô si ta có
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c=1\)
Lại có:
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
⇒ P ≥ \(2020.1+1=2021\)
Vậy Pmin = 2021 khi và chỉ khi a = b = c =1/3
Cho ba số thực dương x,y,z thỏa mãn \(\frac{ac\left(b-1\right)}{b\left(a+c\right)}=\frac{4}{3}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{2\left(a+b\right)^2}{2a+3b}+\frac{\left(b+2c\right)^2}{2b+c}+\frac{\left(2c+a\right)^2}{c+2a}\)