cho tam giác MNQ vuông tại M có MN=5cm ; MQ =6cm
a, giải tam giác MNQ
b,kẻ đường cao MH .tính NH,QH
c,từ H kẻ HE\(⊥\)MN,HK\(⊥\)MQ.tính diện tích tứ giác MEHK
Cho tam giác MNQ vuông tại M có MN<MQ và MNQ=60 độ
ME là phân giác của góc NMQ (E thuộc NQ)
Vẽ đường thẳng qua E và vuông góc với đường thẳng NQ cắt MQ tại H, cắt đường thẳng MN tại F. Gọi O là tâm đường tròn ngoại tiếp tam giác NFQ.
a) C/M: Tứ giác FMEQ nội tiếp trong một đường tròn. Xác định vị trí tâm I của đường tròn đó.
b) C/M: OE//NH
giúp mình với ạ. Các bạn vẽ hình cho mình với nhé
a: góc FEQ=góc FMQ=90 độ
=>FMEQ nội tiếp
Tam I là trung điểm của FQ
cho tam giác MNQ vuông tại M có đường cao MH. biết MQ=12,QN=20.tính MN,NH,QH,HN
vẽ tam giác
Áp dụng HTL trong tam giác MNQ vuông tại Q:
\(MQ^2=QH.QN\)
\(\Rightarrow QH=\dfrac{MQ^2}{QN}=\dfrac{12^2}{20}=7,2\)
Áp dụng đ/lý Pytago:
\(QN^2=MN^2+MQ^2\)
\(\Rightarrow MN=\sqrt{QN^2-MQ^2}=\sqrt{20^2-12^2}=16\)
Áp dụng HTL:
\(MN^2=NH.QN\)
\(\Rightarrow NH=\dfrac{MN^2}{QN}=\dfrac{16^2}{20}=12,8\)
a: Xét ΔNKH vuông tại K và ΔNMQ vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔNKH~ΔNMQ
b: Xét ΔQMN có
H là trung điểm của QN
HK//QM
Do đó: K là trung điểm của MN
Xét ΔQMN có
H là trung điểm của QN
HE//MN
Do đó: E là trung điểm của QM
Xét tứ giác MKHE có \(\widehat{MKH}=\widehat{MEH}=\widehat{EMK}=90^0\)
nên MKHE là hình chữ nhật
=>HK=EM và MK=EH
ta có: HK=EM
EM=EQ
Do đó: HK=EM=EQ
Ta có: MK=EH
MK=KN
Do đó: EH=MK=KN
Xét ΔEMK vuông tại M và ΔHKN vuông tại K có
EM=HK
MK=KN
Do đó: ΔEMK=ΔHKN
=>ΔEMK~ΔHKN
1. Cho tam giác MNP cân tại M,Q là trung điểm của NP.A, B thuộc NP sao cho NA = PB.Kẻ AH vuông góc MN tại H, BK vuông góc với MP tại K và AH cắt BK tại O
a) tam giác MNQ = tam giác MPQ
b) tam giác MNA = tam giác MPB
c) MH=DK : M,Q,O thẳng hàng
a: Xét ΔMQN và ΔMQP có
MQ chung
QN=QP
MN=MP
=>ΔMQN=ΔMQP
b: Xét ΔMNA và ΔMBP có
MN=MP
góc N=góc P
NA=PB
=>ΔMNA=ΔMBP
Cho tam giác MNP vuông tại M, có N = 60 độ và MN = 8cm. Tia phân giác của góc N cắt MP tại K. Kẻ KQ vuông góc với NP tại Q.
a) Chứng minh △MNK = △QNK.
b) Xác định dạng của tam giác MNQ và NKP.
c) Tính độ dài cạnh MQ, QP
a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:
\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)
\(NK\) là cạnh chung
\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)
b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)
\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MNQ\) cân tại \(N\)
Mà \(\widehat{MNQ}=60^o\)
\(\Rightarrow\Delta MNQ\) đều
Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)
\(\Rightarrow\Delta NKP\) cân tại \(K\)
c) Vì \(\Delta NMQ\) đều (chứng minh trên)
\(\Rightarrow NM=MQ=NQ=8cm\)
Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:
\(PN=2MN=2.8=16cm\)
\(\Rightarrow PQ=16-8=8cm\)
a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔMNK=ΔQNK
b: Ta có: ΔMNK=ΔQNK
nên NM=NQ
=>ΔNMQ cân tại N
mà \(\widehat{MNQ}=60^0\)
nên ΔMNQ đều
Xét ΔNKQ có
\(\widehat{KPN}=\widehat{KNP}\)
nên ΔNKQ cân tại K
c: Xét ΔMNP vuông tại M có
\(\cos N=\dfrac{MN}{NP}\)
=>NP=16(cm)
=>\(MP=8\sqrt{3}\left(cm\right)\)
Cho tam giác MNP vuông tại M, có MN = 3cm, NP= 5cm. Giải tam giác vuông MNP ( góc làm tròn đến độ )
MP=4cm
\(\widehat{N}=53^0;\widehat{P}=37^0\)
Cho hình tam giác MNQ vuông tại M. Có cạnh MN = 21cm, MQ = 20cm. Điểm K nằm trên cạnh MN, sao cho KM = 5,25cm. Từ K kẻ dường thẳng song song với MQ cắt NQ tại E. Tính độ dài KE
Nối M với E ta có:
Diện tích tam giác MNQ là:
20 x 21 : 2 = 210 (cm2)
Vì QE song song với MK
=> Diện tích tam giác MQE là:
20 x 5,25 : 2 = 52,5 (cm2)
Diện tích tam giác MEN là:
210 - 52,5 = 157,5 (cm2)
Chiều cao KE là:
157,5 x 2 : 21 = 15 (cm)
Cho tam giác MNQ vuông tại A có QH là đường cao điểm H chia MN thành 2đoạn thẳng HM=4cm, HN =12cm. Tình độ dài các đoạn QH, QM, ON , góc M
\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)
\(QM=\sqrt{\left(4\sqrt{3}\right)^2+4^2}=8\left(cm\right)\)
\(QN=\sqrt{16^2-8^2}=8\sqrt{3}\left(cm\right)\)
Cho tam giác MNQ vuông tại A có QH là đường cao điểm H chia MN thành 2đoạn thẳng HM=4cm, HN =12cm. Tình độ dài các đoạn QH, QM, ON , góc M
\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)
QM=8(cm)
\(QN=8\sqrt{3}\left(cm\right)\)