|1-\(\sqrt{23}\)|+23-\(\sqrt{23}\)-\(\left|-2023\right|^0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{\left(x+30\right)^2+23}=\left(y+30\right)^2+\sqrt{y+17}\\\sqrt{\left(y+30\right)^2+23}=\left(x+30\right)^2+\sqrt{x+17}\end{cases}}\)
giả sử \(x\ge y\Rightarrow\sqrt{\left(y+30\right)^2+23}\ge\sqrt{\left(x+30\right)^2+23}\Rightarrow y\ge x\)
=>x=y
lại có:
\(x+17\ge0\Rightarrow x+30=a\ge13\)
xét \(a^2-\sqrt{a^2+23}=\frac{a^4-a^2-23}{a^2+\sqrt{a^2+23}}=\frac{a^2\left(a^2-1\right)-23}{\sqrt{a^2+23}+a^2}>0\)
=>pt vô no
what hell ?
Bạn giải hộ ai à?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.vi diệu !
hok cũng giỏi ghê
~ tự biên tự diễn hả ~
a) cho C = 3 - \(3^2+3^3-3^4+3^5-3^6+...+3^{23}-3^{24}\), chứng minh rằng C \(⋮\) 420
b) tìm x và y biết \(\left(x+1\right)^{2022}+\left(\sqrt{y-1}\right)^{2023}=0\)
a: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3-3^4\right)+\left(3^5-3^6+3^7-3^8\right)+\cdots+\left(3^{21}-3^{22}+3^{23}-3^{24}\right)\)
\(=\left(3-3^2+3^3-3^4\right)+3^4\left(3-3^2+3^3-3^4\right)+\cdots+3^{20}\left(3-3^2+3^3-3^4\right)\)
\(=-60\left(1+3^4+\cdots+3^{20}\right)\) ⋮60
\(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+\cdots-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=\left(3-3^2+3^3\right)-3^3\left(3-3^2+3^3\right)+\cdots-3^{21}\left(3-3^2+3^3\right)\)
\(=21\left(1-3^3+\cdots-3^{21}\right)\) ⋮21
=>C⋮7
mà C⋮60
và ƯCLN(60;7)=1
nên C⋮60*7
=>C⋮420
b:
ĐKXĐ: y>=1
\(\left(x+1\right)^{2022}\ge0\forall x;\left(\sqrt{y-1}\right)^{2023}\ge0\forall y\) thỏa mãn ĐKXĐ
=>\(\left(x+1\right)^{2022}+\left(\sqrt{y-1}\right)^{2023}\ge0\forall x,y\)
Dấu '=' xảy ra khi x+1=0 và y-1=0
=>x=-1 và y=1
A=\(\sqrt{23+6\sqrt{10}}-\)\(\sqrt{23-6\sqrt{10}}\)
B=\(\left(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}+1\right)\times\)\(\left(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}-1\right)\)
giúp mik vs![]()
a) Ta có: \(A=\sqrt{23+6\sqrt{10}}-\sqrt{23-6\sqrt{10}}\)
\(=\sqrt{18+2\cdot3\sqrt{2}\cdot\sqrt{5}+5}-\sqrt{18-2\cdot3\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(3\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{5}\right)^2}\)
\(=3\sqrt{2}+\sqrt{5}-3\sqrt{2}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) Ta có: \(B=\left(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}+1\right)\left(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}+1\right)\left(\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-1\right)\)
\(=\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)\)
=2-1=2
\(\left(2\sqrt{5}-\sqrt{3}\right)\left(23+2\sqrt{15}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(23-2\sqrt{15}\right)\)= ?
\(\left(2\sqrt{5}-\sqrt{3}\right)\left(23+2\sqrt{15}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(23-2\sqrt{15}\right)\)
\(=40\sqrt{5}-3\sqrt{3}-40\sqrt{5}+3\sqrt{3}\)
\(=0\)
Cho x, y, z là các số thực thỏa mãn: \(\left(x-23\right)\left(y-1\right)\left(z-2008\right)=1\)
Tìm GTLN của biểu thức:
\(L=\left(\sqrt{x-23}-1+\dfrac{1}{\sqrt{y-1}}\right)\left(\sqrt{y-1}-1+\dfrac{1}{\sqrt{z-2008}}\right)\left(\sqrt{z-2008}-1+\dfrac{1}{\sqrt{x-23}}\right)\)
Help me!
Cho x= \(\dfrac{1}{3}\left(\dfrac{\sqrt[3]{23+\sqrt{513}}}{4}+\dfrac{\sqrt[3]{23-\sqrt{513}}}{4}-1\right)\). Tính D=2x^3+2x^2+1
Số khá xấu. Bạn coi lại đề xem có viết nhầm biểu thức không?
Tính x=\(\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}}+\sqrt[3]{\frac{23-\sqrt{513}}{4}}-1\right)\)
Đặt \(x=t-\frac{1}{3}\)
\(\Rightarrow t=x+\frac{1}{3}=\sqrt[3]{\frac{23+\sqrt{513}}{108}}+\sqrt[3]{\frac{23-\sqrt{513}}{0108}}\)
\(\Leftrightarrow t^3=\frac{23+\sqrt{513}}{108}+\frac{23-\sqrt{513}}{108}+3.\sqrt[3]{\frac{23^2-513}{108^2}}.t\)
\(\Leftrightarrow t^3=\frac{23}{54}+\frac{t}{3}\)
\(\Leftrightarrow t^3-\frac{t}{3}+\frac{31}{54}=1\)
Ta lại có
\(A=2x^3+2x^2+1\)
\(\Leftrightarrow\frac{A}{2}=x^3+x^2+\frac{1}{2}\)
\(=\left(t-\frac{1}{3}\right)^3+\left(t-\frac{1}{3}\right)^2+\frac{1}{2}\)
\(=t^3-\frac{t}{3}+\frac{31}{54}=1\)
\(\Rightarrow A=2\)
PS. Bài này nha. Bài kia viết mờ mắt luôn nên ghi nhầm vài chỗ (giải bằng điện thoại chán quá)
\(x=\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}+\sqrt[3]{\frac{23-\sqrt{513}}{4}-1}}\right)\)
\(x=\frac{1}{3}\left(6,3733+6,3733-1\right)\)
\(x=\frac{1}{3}\left(12,7466-1\right)\)
\(x=\frac{1}{3}11,7466\)
\(x=\frac{1}{3}x11,7466\)
\(x=\frac{11,7466}{3}\)
\(x=3,9155\)
Bạn ơi bạn làm kiểu gì mà ra số đó vậy??
Tính x= \(\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}}+\sqrt[3]{\frac{23-\sqrt{513}}{4}}-1\right)\)
Tính
a/ \(\sqrt{2-\sqrt{3}}-\sqrt{6+3\sqrt{3}}\)
b/ \(\left(2\sqrt{5}-\sqrt{3}\right)\left(23+2\sqrt{15}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(23-2\sqrt{15}\right)\)