M=(100-1).(100-22).(100-32). ... .(100-502)
Tính :
a ) 2+22+222+...+22..2 ( 100 chữ số 2 )
b ) 23 + 233+2333+...+233..3(100 chữ số 3 )
c ) 32+332+.....+33..32( 100 chữ số 3 )
let S be 1!(12+1+1)+2!(22+2+1)+3!(32+3+1)+...+100!(1002+100+1). Find S+1/101!.(as usual, k! = 1.2.3.....(k-1).k)
Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!
By definition, n(n + 1)n! + n! = n! + n(n + 1)!
Therefore, S can be simplified as
1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!
So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)
\(=...\)
\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)
\(=\dfrac{101!+100\cdot101!}{101!}\)
\(=1+100=101\)
Hence, \(\dfrac{S+1}{101!}=101\)
750 :{32-[22+(5.32-420]}+100
\(750:\left\{32-\left[22+\left(5.32-420\right)\right]\right\}+100\)
\(=750:\left\{32-\left[22+\left(160-420\right)\right]\right\}+100\)
\(=750:\left\{32-\left[22+\left(-260\right)\right]\right\}+100\)
\(=750:\left[32-\left(-238\right)\right]+100\)
\(=750:270+100\)
\(=\dfrac{25}{9}+100\)
\(=\dfrac{925}{9}\)
Mình ko chắc có đúng hông, có gì thông kẻm nha fen
750 :{32-[22+(5.32-420)]}+100
=750:{32-[22+(160-420)]}+100
=750:{32-[22-260]}+100
=750:{32+238}+100
=750:270+100
=25/9+100
=925/9
tick giùm
2 [( 7 - 33 : 32 ) :22 + 99 ] - 100
2.[( 7 - 33: 32):22 + 99] - 100
= 2.[(7 - 3) : 4 + 99] - 100
= 2. [1 + 99] - 100
= 200 - 100
= 100
= 0
100+502
602 mà , dễ như húp văn vhaso
Tính
a ) S= 5+55+555+...+55...5 ( 50 chữ số 5 )
b ) S= 75+755+7555+...+755...5 ( 50 chữ số 5 )
c ) 2+22+222+...+22..2 ( 100 chữ số 2 )
d ) 23 + 233+2333+...+233..3(100 chữ số 3 )
e ) 32+332+.....+33..32( 100 chữ số 3 )
\(\frac{9}{5}\)S = 9+99+...+99...9 (50 chữ số 9)
=10-1+102-1+...+1050-1
=(10+102+...+1050)-(1+1+...+1)
=(1051-10) - 50
=1051-60
\(\Rightarrow\)S=(1051-60)/\(\frac{9}{5}\)= 5(1051-60)/9
Tính
a ) S= 5+55+555+...+55...5 ( 50 chữ số 5 )
b ) S= 75+755+7555+...+755...5 ( 50 chữ số 5 )
c ) 2+22+222+...+22..2 ( 100 chữ số 2 )
d ) 23 + 233+2333+...+233..3(100 chữ số 3 )
e ) 32+332+.....+33..32( 100 chữ số 3 )
Ta có công thức tính dãy số trên :
\(S=\dfrac{K}{9}\left(\dfrac{10^{n+1}-}{9}-\left(n+1\right)\right)\)
\(=\dfrac{5}{9}\left(\dfrac{10^{51}-1}{9}-51\right)=6,172839506\times10^{49}\)
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Tính
400 + 502 x 4 + 100
Đáp án là : 400 + 502 x 4 + 100 = 2508 nha bạn
400 + 502x4 + 100 = 400 + 2008 + 100 =2508