(x+2) . (y + 3) = 6
Cho x-y=2 và xy=+1. Tính (x^2+y^2); (x^3-y^3); (x^2-y^2)^2; x^6-y^6
1/
\(x^2+y^2=\left(x-y\right)^2+2xy=2^2+2.1=6\)
2/
\(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)=2\left(6+1\right)=14\)
3/
\(x^2-y^2=\left(x-y\right)\left(x+y\right)=2\left(x+y\right)\) (3)
Ta có
\(x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-2=6\)
\(\Rightarrow\left(x+y\right)^2=8\Rightarrow\left(x+y\right)=\pm2\sqrt{2}\) Thay vào (3)
\(\Rightarrow x^2-y^2=2.\pm2\sqrt{2}=\pm4\sqrt{2}\)
4/
\(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)\) (4)
Ta có
\(x^3-y^3=14\) (cmt)
Ta có
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right).5=\pm2\sqrt{2}.5=\pm10\sqrt{2}\)
\(\Rightarrow x^6-y^6=\pm10\sqrt{2}.14=\pm140\sqrt{2}\)
Đặt $x=\sqrt[3]{3+2\sqrt{2}},y=\sqrt[3]{3-2\sqrt{2}}$
$\Rightarrow \left\{\begin{matrix} x^{3}+y^{3}=6\\xy=1 \end{matrix}\right.$
$\Rightarrow (x+y)^{3}=x^{3}+y^{3}+3xy(x+y)=6+3xy=3[1+1+(x+y)]> 3.3\sqrt[3]{1.1.(x+y)}$
(Vì x>1,y>0=>x+y>1)
Do đó: $(x+y)^{3}> 3^{2}.\sqrt[3]{x+y}$
$\Rightarrow (x+y)^{9}>3^{6}.(x+y)$
$\Rightarrow (x+y)^{8}>3^{6}$
=>đpcm
giải hệ pt (đặt ẩn phụ )
a) x+2/x+1 + 2/y-2 =6
5/x+1 -1/y-2 =3
b) 2/2x-y +3/x-2y =1/2
2/2x-y -1/x-2y =1/18
c) 2|x-6| +3|y+1| =5
5|x-6| -4|y+1| =1
d) |x| +|y-3| =1
y - |x| =3
a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
=>x+1=1 và y-2=1/2
=>x=0 và y=5/2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)
=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6
=>x-2y=9 và 2x-y=12
=>x=5; y=-2
c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
1, x^6 - y^6
2, x^3 - 9x^2 + 11x - 21
3, y(x-2z)^2 + 8xyz + x(y-2z)^2 - 2z(x+y)^2
4, x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2 + 2xyz
5, ( x^2 + y^2 )^3 + (z^2 - x^2 )^3 - ( y^2 + z^2 )^3
6, ( x+y+z)^3 - x^3 - y^3 - z^3
Cho biết hai đại lượng x và y tỉ lệ nghịch với nhau, và khi x = 3 thì y = -6
1) viết công thức liên hệ giữa x và y
2) tính giá tri của y khi x = -1 ; x = 2 ; x = -3 ; x = 6 ; x = -3/4
3) tính giá trị của x khi y = 1 ; y = -2 ; y = -6 ; y = 2/3 ; y = -6/5
Bài 1 : Tìm x,y thuộc Z :
1,( x + 1 ) . ( y - 2 ) = 0
2,( x - 5 ) . ( y - 7 ) = 1
3,( x + 4 ) . ( y - 2 ) = 2
4,( x - 4 ) . ( y + 3 ) = -3
5,( x + 3 ) . ( y - 6 ) = -4
6,( x - 8 ) . ( y + 7 ) = 5
7,( x + 7 ) . ( y - 3 ) = -6
8,( x - 6 ) . ( y + 2 ) = 7
1)\(\left(x+1\right).\left(y-2\right)=0\) \(\left(x,y\inℤ\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
2)\(\left(x-5\right).\left(y-7\right)=1\)
x-5 | 1 | -1 |
y-7 | 1 | -1 |
x | 6 | 4 |
y | 8 | 6 |
3)\(\left(x+4\right).\left(y-2\right)=2\)
x+4 | 1 | 2 | -1 | -2 |
y-2 | 2 | 1 | -2 | -1 |
x | -3 | -2 | -5 | -6 |
y | 4 | 3 | 0 | 1 |
4)\(\left(x-4\right).\left(y+3\right)=-3\)
x-4 | 1 | -1 | 3 | -3 |
y+3 | -3 | 3 | -1 | 1 |
x | 5 | 3 | 7 | 1 |
y | -6 | 0 | -4 | -2 |
5)\(\left(x+3\right).\left(y-6\right)=-4\)
x+3 | -1 | 1 | -4 | 4 | 2 | -2 |
y-6 | 4 | -4 | 1 | -1 | -2 | 2 |
x | -4 | -2 | -7 | 1 | -1 | -5 |
y | 10 | 2 | 7 | 5 | 4 | 8 |
6)\(\left(x-8\right).\left(y+7\right)=5\)
x-8 | 1 | 5 | -1 | -5 |
y+7 | 5 | 1 | -5 | -1 |
x | 9 | 13 | 7 | 3 |
y | -2 | -6 | -12 | -8 |
7)\(\left(x+7\right).\left(y-3\right)=-6\)
x+7 | -1 | 1 | -6 | 6 | -2 | 2 | -3 | 3 |
y-3 | 6 | -6 | 1 | -1 | 3 | -3 | 2 | -2 |
x | -8 | -6 | -13 | -1 | -9 | -5 | -10 | -4 |
y | 9 | -3 | 4 | 2 | 6 | 0 | 5 | 1 |
8)\(\left(x-6\right).\left(y+2\right)=7\)
x-6 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 7 | 13 | 5 | -1 |
y | 5 | -1 | -9 | -3 |
ok :)
Cho x+y=1 tính giá trị biểu thức A=x^3 +y^3 +3xy(x^2 +y^2)+6*x^3*y^2 +6*x^2*y^3
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)
\(=1-3xy+3xy\left[1-2xy\right]+6x^2y^2\)
=1
Cho x+y=3, x.y=2
Tính x^2+y^2; x^3+y^3; x^4+y^4; x^5+y^5; x^6+y^6 ?
Gọi x,y là nghiệm của phương trình:
\(\left\{{}\begin{matrix}S=x+y=3\\P=x.y=2\end{matrix}\right.\Rightarrow a^2-S.a+P=0\)
\(\Leftrightarrow a^2-3a+2=0\Leftrightarrow\left[{}\begin{matrix}a_1=x=2\\a_2=y=1\end{matrix}\right.\)
a)\(x^2+y^2=1^2+2^2=5\)
b)\(x^3+y^3=1^3+2^3=9\)
c)\(x^4+y^4=1^4+2^4=17\)
d)\(x^5+y^5=1^5+2^5=33\)
e)\(x^6+y^6=1^6+2^6=65\)
Cho x+y=3, x.y=2
Tính x^2+y^2; x^3+y^3; x^4+y^4; x^5+y^5; x^6+y^6 ?
CÓ: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)
CÓ: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)
CÓ: \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)
CÓ: \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)
\(=51-2.9=51-18=33\)
CÓ: \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)
\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)
\(=99-34=65\)
\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)
\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)
\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)