Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê duy mạnh
Xem chi tiết
Nguyễn Thế Công
Xem chi tiết
shitbo
16 tháng 7 2019 lúc 14:57

\(\hept{\begin{cases}\left(x+\frac{2019}{2020}\right)^{100}\ge0\\\left(y-\frac{9}{11}\right)^{200}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2019}{2020}\\y=\frac{9}{11}\end{cases}}\)

Huỳnh Quang Sang
16 tháng 7 2019 lúc 17:11

Ta có : \(\left[x+\frac{2019}{2020}\right]^{100}\ge0\forall x\)

\(\left[y-\frac{9}{11}\right]^{200}\ge0\forall y\)

\(\Leftrightarrow\left[x+\frac{2019}{2020}\right]^{100}+\left[y-\frac{9}{11}\right]^{200}\ge0\forall x,y\)

Dấu " = " xảy ra khi : \(\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2019}{2020}\\y=\frac{9}{11}\end{cases}}\)

Nguyễn Khánh Ly
Xem chi tiết
Lục Hoàng Phong
Xem chi tiết
Lightning Farron
26 tháng 6 2017 lúc 13:34

Ta có: \(P\left(x\right)=x^5+ax^4+bx^3+cx^2+dx+e\)

Suy ra \(P\left(1\right)=1^5+a\cdot1^4+b\cdot1^3+c\cdot1^2+d\cdot1+e=1\)

\(\Rightarrow a+b+c+d+e=0\)

\(P\left(2\right)=2^5+a\cdot2^4+b\cdot2^3+c\cdot2^2+d\cdot2+e=4\)

\(\Rightarrow16a+8b+4c+2d+e+28=0\)

\(P\left(3\right)=3^5+a\cdot3^4+b\cdot3^3+c\cdot3^2+d\cdot3+e=9\)

\(\Rightarrow81a+27b+9c+3d+e+234=0\)

\(P\left(4\right)=4^5+a\cdot4^4+b\cdot4^3+c\cdot4^2+d\cdot4+e=16\)

\(\Rightarrow256a+64b+16c+4d+e+1008=0\)

\(P\left(5\right)=5^5+a\cdot5^4+b\cdot5^3+c\cdot5^2+d\cdot5+e=25\)

\(\Rightarrow625a+125b+25c+5d+e+999=0\)

Thay lẫn lộn vào nhau đi nhé

Aki Tsuki
26 tháng 6 2017 lúc 18:58

Cho phép lm tiếp....

\(\Rightarrow\left\{{}\begin{matrix}15a+7b+3c+d=-28\\80a+26b+8c+2d=-234\\255a+63b+15c+3d=-1008\\624a+124b+24c+4d=-3100\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}50a-12b+2c=-178\\210a+42b+6c=-924\\564a+96b+12c=-2988\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-15\\b=85\\c=-224\end{matrix}\right.\)

Thay bào pt \(15a+7b+3c+d=-28\) ta có: \(-225+595-672+d=-28\Rightarrow d=274\)

Thay vào pt \(a+b+c+d+e=0\) ta có:

\(-15+85-224+274+e=0\Rightarrow e=-120\)

Thay a,b,c,d,e vào r` tính là ra!

p/s: cho a,b,c bấm casio nhé!

Aki Tsuki
26 tháng 6 2017 lúc 19:08

Cách khác:

Tìm đa thức phụ: giả sử có đa thức:

\(\:ax^2+bx+c\)

Ta có: \(\left\{{}\begin{matrix}P\left(1\right)=a\cdot1^2+b\cdot1+c=1\\P\left(2\right)=a\cdot2^2+b\cdot2+c=4\\P\left(3\right)=a\cdot3^2+b\cdot3+c=9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\4a+2b+c=4\\9a+3b+c=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=0\\c=0\end{matrix}\right.\)

\(\Rightarrow\:ax^2+bx+c=1\cdot x^2+0\cdot x+0=x^2\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+x^2\)

Tới đây thay từng x vào r` tính....

Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
21 tháng 7 2021 lúc 19:00

undefined

Đen đủi mất cái nik
Xem chi tiết
Comebacktome
30 tháng 1 2019 lúc 12:58

Sửa lại đề là tìm Max nhé m.n

Ta có:

\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

Xét biểu thức:

\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)

tưởng tự:

\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

Do vai trò của a và b và c như nhau nên ta giả sử

\(a\ge b\ge c\)

Khi đó ta có:

\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)

Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)

Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)

\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)

Dấu bằng xảy ra khi a=b=c=2

Đen đủi mất cái nik
30 tháng 1 2019 lúc 13:03

Tìm max nha mấy god, e bị nhầm sory

Đen đủi mất cái nik
10 tháng 2 2019 lúc 16:35

 e sửa lại hahaha, bất đẳng thức chebyshev áp dụng v là ko đúng, phải lớn hơn hoặc bằng ạ, e cứ bị nhầm dấu, lần đầu đã ok r sau lại còn sửa hjhj

Trúc Giang
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Xyz OLM
20 tháng 4 2023 lúc 23:28

Gọi M(x,y) 

Trong (E) có : \(c=\sqrt{a^2-b^2}=\sqrt{5}\)

Từ đó ta có : \(F_1\left(\sqrt{5};0\right);F_2\left(-\sqrt{5};0\right)\)\(F_1F_2=2\sqrt{5}\) 

=> \(\overrightarrow{F_1M}\left(x-\sqrt{5};y\right)\Rightarrow F_1M^2=\left(x-\sqrt{5}\right)^2+y^2\)

tương tự \(F_2M^2=\left(x+\sqrt{5}\right)^2+y^2\)

Do \(\widehat{F_1MF_2}=90^{\text{o}}\) nên tam giác F1MF2 vuông tại M

=> F1M2 + F2M2 = F1F22

<=>  \(\left(x-\sqrt{5}\right)^2+y^2+\left(x+\sqrt{5}\right)^2+y^2=20\)

\(\Leftrightarrow x^2+y^2=5\)

Lại có \(M\in\left(E\right)\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)

từ đó ta có hệ \(\left\{{}\begin{matrix}x^2+y^2=5\\\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\dfrac{9}{5}\\y^2=\dfrac{16}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{3\sqrt{5}}{5}\\y=\pm\dfrac{4\sqrt{5}}{5}\end{matrix}\right.\)

 

Lê Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 3 2022 lúc 21:46

d: \(=\dfrac{-7}{9}\left(\dfrac{3}{11}+\dfrac{8}{11}\right)+1+\dfrac{7}{9}=1\)

e: \(=\dfrac{1}{5}\left(\dfrac{10}{19}+\dfrac{9}{19}\right)-\dfrac{2}{35}=\dfrac{1}{5}-\dfrac{2}{35}=\dfrac{5}{35}=\dfrac{1}{7}\)

f: \(=\left(-25\cdot4\right)\cdot\left(-8\cdot125\right)\cdot\left(-17\right)=-1700000\)

pham quynh trang
Xem chi tiết
pham quynh trang
24 tháng 7 2017 lúc 13:08

Tim Max nha

Nguyễn Thị Hải Yến
24 tháng 7 2017 lúc 13:22

bóp phít