tính \(\sqrt{57-40\sqrt{2}}-\sqrt{40\sqrt{2}+57}\)
\(\sqrt{29-12\sqrt{5}}-\sqrt{12\sqrt{5}+29}\)
Tính:
\(a)E=\sqrt{\left|12\sqrt{5}-29\right|}-\sqrt{12\sqrt{5}+29}\\ b)\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)
a) \(E=\sqrt{\left|12\sqrt{5}-29\right|}-\sqrt{12\sqrt{5}+29}\)
\(\Leftrightarrow E^2=\left|12\sqrt{5}-29\right|-12\sqrt{5}-29\)
\(\Leftrightarrow E^2=29-12\sqrt{5}-12\sqrt{5}-29\)
\(\Leftrightarrow E^2=-24\sqrt{5}\)
\(\Leftrightarrow E=-2\sqrt{6\sqrt{5}}\)
b) Đặt \(F=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)
\(\Leftrightarrow F^2=\left|40\sqrt{2}-57\right|-40\sqrt{2}-57\)
\(\Leftrightarrow F^2=57-40\sqrt{2}-40\sqrt{2}-57\)
\(\Leftrightarrow F^2=-80\sqrt{2}\)
\(\Leftrightarrow F=-4\sqrt{5\sqrt{2}}\)
Tính:
\(a)E=\left|12\sqrt{5}-29\right|-\left|12\sqrt{5}+29\right|\\ b)A=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)
A=\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
B=\(\sqrt{57-40\sqrt{2}}-\sqrt{40\sqrt{2+57}}\)
C=\(\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29}-12\sqrt{5}}\)
Mọi người làm nhanh hộ mình nhé
A=\(\sqrt{\left(4+\sqrt{8}\right)^2}\)\(-\sqrt{\left(4-\sqrt{8}\right)^2}\)=\(4+\sqrt{8}\)\(-\left(4-\sqrt{8}\right)\)=\(2\sqrt{8}\)
Giờ mình chỉ giải đc câu a thôi để hồi nao mình rảnh giải típ cho
THỰC HIỆN PHÉP TÍNH
26) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
40)\(\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{\left|40\sqrt{2}+57\right|}\)
26, đặt bthuc là A suy ra A2=4+4+2\(\sqrt{16-\left(10+2\sqrt{5}\right)}\) suy ra A2=8+2(\(\sqrt{5}\) -1) suy ra A=\(\sqrt{6+2\sqrt{5}}\)=\(\sqrt{5}\)+1
40, tương tự
Bài 1: Tính
\(\sqrt{3+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\\ \sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}\\ \sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}\\ \sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}\\ \sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\\ \sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
1.
$\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3}}-\sqrt{3+1-2\sqrt{3}}$
$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}$
$=|\sqrt{3}+1|-|\sqrt{3}-1|=2$
2.
\(\sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}=\sqrt{12+6\sqrt{3}+\sqrt{9+3-2\sqrt{9.3}}}=\sqrt{12+6\sqrt{3}+\sqrt{(3-\sqrt{3})^2}}\)
\(=\sqrt{12+6\sqrt{3}+3-\sqrt{3}}=\sqrt{15+5\sqrt{3}}\)
3.
\(\sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{9-4\sqrt{2}+\sqrt{8+1+2\sqrt{8.1}}}\)
\(=\sqrt{9-4\sqrt{2}+\sqrt{2\sqrt{2}+1)^2}}=\sqrt{9-4\sqrt{2}+2\sqrt{2}+1}=\sqrt{10-2\sqrt{2}}\)
4.
\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8+1-2\sqrt{8.1}}}}\)
\(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{(\sqrt{8}-1)^2}}}\) \(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8}-1}}=\sqrt{\sqrt{2}+2+\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{\sqrt{2}+2+\sqrt{(2+1+2\sqrt{2}}}=\sqrt{\sqrt{2}+2+\sqrt{(\sqrt{2}+1)^2}}=\sqrt{\sqrt{2}+2+\sqrt{2}+1}\)
\(=\sqrt{3+2\sqrt{2}}=\sqrt{(\sqrt{2}+1)^2}=\sqrt{2}+1\)
5.
\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)
6.
\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)
\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)
\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)
\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)
Rút gọn :
\(a.\sqrt{17-12\sqrt{2}}+\sqrt{2}\)
\(b.\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(c.\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)
1, \(\sqrt{21+12\sqrt{3}}\)
2, \(\sqrt{57-40\sqrt{2}}\)
3, \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5-1}^2\right)}\)
Tính
1) \(\sqrt{21+12\sqrt{3}}=\sqrt{3^2+2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}=\sqrt{\left(3+2\sqrt{3}\right)^2}\)
\(=\left|3+2\sqrt{3}\right|=3+2\sqrt{3}\)
2) \(\sqrt{57-40\sqrt{2}}=\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}=\sqrt{\left(5-4\sqrt{2}\right)^2}\)
\(=\left|5-4\sqrt{2}\right|=4\sqrt{2}-5\)
3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left|\sqrt{5}+1\right|+\left|\sqrt{5}-1\right|\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
a.\(\sqrt{19-6\sqrt{2}}\) b.\(\sqrt{11-6\sqrt{2}}\) c.\(\sqrt{9-6\sqrt{2}}\)
d.\(\sqrt{21+12\sqrt{3}}\) e.\(\sqrt{57-40\sqrt{2}}\)
a) \(\sqrt{19-6\sqrt{2}}=3\sqrt{2}-1\)
b) \(\sqrt{11-6\sqrt{2}}=3-\sqrt{2}\)
d) \(\sqrt{21+12\sqrt{3}}=2\sqrt{3}+3\)
e) \(\sqrt{57-40\sqrt{2}}=4\sqrt{2}-5\)
a) A=\(\sqrt{\left(4-\sqrt{15}\right)^2+\sqrt{15}}\)
b) B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
c) C=\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
d)D=\(\sqrt{29+12\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(=4-\sqrt{15}+\sqrt{15}=4\)
b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)
c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=2\sqrt{5}+3-2\sqrt{5}+3\)
=6
a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)
\(A=4-\sqrt{15}+\sqrt{15}\)
\(A=4\)
b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)
\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(B=2-\sqrt{3}-1+\sqrt{3}\)
\(B=1\)
c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)
\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)
\(C=3\sqrt{5}-2-3\sqrt{5}-2\)
\(C=-4\)
d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)
\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)
\(D=2\sqrt{5}+3-2\sqrt{5}+3\)
\(D=6\)