cho y=x+3(d1) và y=-2x+m*-1(d2)
tìm m để d1 cắt d2 tại 1 điểm trên trục tung
cho (d1): y = mx-m+2 và (d2):y=(m-3)x+m. Tìm m để (d1) và (d2) cắt nhau tại 1 điểm trên trục tung
\(PTHDGD:mx-m+2=\left(m-3\right)x+m\\ \text{Thay }x=0\Leftrightarrow2-m=m\Leftrightarrow m=1\)
Bài 1: Cho (d1) y= (m+2n)x+5m+3n+1
(d2) y= (3m+2n)x+2m+n+4
Tìm m, n để (d1) cắt (d2) tại A(1,5)
Bài 2: Tìm m để (d1) y= (m-2)x+m^2+5n+6 và (d2) y= -2x+6 cắt nhau tại 1 điểm trên trục tung
Cho hai đường thẳng d1: y = (m2-6)x +m và d2: y = -2x + 3. Tìm tham số m để d1 // d2 và d1 cắt trục tung tại điểm có tung độ bằng 2
Để hai đường thing d1 và d2 song song với nhau
=>\(\left\{{}\begin{matrix}a=a^,\\b\ne b^,\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6=-2\\m\ne3\end{matrix}\right.\)
\(\Leftrightarrow m=\mp2\) t/m
Vậy với m ,,, thì d1 // d2
Theo bài ra ta có ddường thing d cắt trục ting tại điểm có tung độ bằng 2 , gọi giao điểm của d1 và Oy là A
=> \(A_{\left(0,2\right)}\)
=> A \(\in\) \(\left(d1\right)y=\left(m^2-6\right)x+m\)
=> Thay x = 0 và y = 2 vào phương trình đường thẳng d1 ta được :
m= 2
Vậy ,,,,
Bài 1: Cho y=(4m+3)x-m+3 (d)
y=(4m-1)x+3m-1 (d1)
a,Tìm m để (d) cắt (d1) tại 1 điểm trên trục tung
b,Tìm m để (d) cắt (d1) tại 1 điểm trên trục hoành
c,Tìm m để (d) và (d1) cắt nhau tại 1 điểm Bài 2: Cho y=(m-1)x+2m-5 (d2) (m khác 1)
a,Tìm m để phương trình đường thẳng (d2) song song với đường thẳng (d3) y=3x+1
b,Tìm m để phương trình đường thẳng (d2) đi qua M(2;1)
c,Vẽ đồ thị của đường thẳng (d2) với giá trị của m tìm được ở câu b. Tính góc tạo bởi đường thẳng vẽ được với trục hoành
Cho 2 đường thẳng
(d1): y= mx+ 1
(d2): y= -x+m+1
Tìm m để
a) (d1) và (d2) cắt nhau tại một điểm trên trục tung
b) (d1) và (d2) cắt nhau tại một điểm trên trục hoành
c) (d1) và (d2) nằm trong góc phần tư thứ III
Bài 1: Cho hai đường thẳng (d1):y = -2x + 1 và (d2):y = (2m - 3)x + 3 - m. Tìm m để (d1) cắt (d2) tại điểm có tung độ bằng 3.
Do giao điểm có tung độ bằng 3 nên hoành độ thỏa mãn:
\(3=-2x+1\Rightarrow x=-1\)
Thế tọa độ giao điểm vào pt d2 ta được:
\(3=-\left(2m-3\right)+3-m\)
\(\Rightarrow-3m+3=0\Rightarrow m=1\)
cho 2 hàm số bậc nhất
(d1) y=\(\left(m-3\right)x+m^2-6\)
(d2) y=\(-2mx+3\)
xác định m để:(d1) \(//\) (d2);
(d1) cắt (d2) nhau tại 1 diểm trên trục tung,
(d1)\(\equiv\)(d2)
\(\left(d_1\right)\text{//}\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne\pm3\end{matrix}\right.\Leftrightarrow m=1\\ \left(d_1\right)\cap\left(d_2\right)\text{ tại 1 điểm trên Oy}\\ \Leftrightarrow\left\{{}\begin{matrix}y=\left(m-3\right)\cdot0+m^2-6\\y=-2m\cdot0+3=3\end{matrix}\right.\Leftrightarrow m^2-6=3\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\\ \left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6=3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Cho hai đường thẳng: (d1) : y = (2 + m)x - 4
và (d2) : y = (3m - 2)x - m +1
a) Tìm m để (d1) // (d2)
b) Tìm m để (d1) cắt (d2) tại một điểm trên trục tung
c) Tìm m để (d1) cắt (d2) tạo một điểm có hoành độ bằng -1
a: Để (d1)//(d2) thì m+2=3m-2
\(\Leftrightarrow-2m=-4\)
hay m=2
Cho các hàm số y=x+1 (d1) ; y = -x+3 (d2) và y=mx+m-1 (d3)
a) Tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2)
b) Tìm tọa độ giao ddiemr của hai đường thẳng (d1) và (d2)
c) Tìm m để (d1) cắt (d3) tại trục tung
d) Tìm giá trị của m để 3 đường thẳng trên đồng quy