Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
👁💧👄💧👁
4 tháng 6 2021 lúc 21:34

Với a;b > 0 ta có:

\(\sqrt{a}+\sqrt{b}\le\dfrac{b}{\sqrt{a}}+\dfrac{a}{\sqrt{b}}\\ \Leftrightarrow\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\le\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\\ \Leftrightarrow a\sqrt{b}+b\sqrt{a}\le a\sqrt{a}+b\sqrt{b}\\ \Leftrightarrow a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}\ge0\\ \Leftrightarrow a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)\ge0\)

Bất đẳng thức cuối cùng luôn đúng vì: \(\left\{{}\begin{matrix}\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\\\sqrt{a}+\sqrt{b}>0\left(a;b>0\right)\end{matrix}\right.\)

Vậy bất đẳng thức được chứng minh với a;b >0

Nguyễn Thị Bình Yên
Xem chi tiết
Nam Nguyễn
Xem chi tiết
Phạm Lan Hương
30 tháng 12 2019 lúc 22:27

ta có :\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a>0;b>0\right)\)

\(\Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\)

\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)

\(\Leftrightarrow ab-a-b+1=1\Leftrightarrow ab-a-b=0\)(1)

ta lại có :\(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow\frac{a+b}{ab}=1\Leftrightarrow ab=a+b\left(2\right)\)

từ (1) và (2) \(\Leftrightarrow a+b-a-b=0\Leftrightarrow0=0\)(luôn đúng)

=> đpcm

Khách vãng lai đã xóa
Messi
Xem chi tiết
Lê Quân
Xem chi tiết
Lê Quân
29 tháng 10 2021 lúc 18:40

\(\sqrt{a}+\sqrt{b}+\sqrt{c}>=ab+bc+ca\)

Nhật Minh Trần
15 tháng 12 2021 lúc 9:00

bài này dễ thôi

Nguyễn Quang Bách
Xem chi tiết
khang phan
Xem chi tiết
Nguyễn Huy Hoàng
Xem chi tiết
Đinh Hồng Ngọc
Xem chi tiết