Tìm phần bù của các tập hợp sau trong \(\mathbb{R}\):
a) \(\left( { - \infty ; - 2} \right)\)
b) \([ - 5; + \infty )\)
Tìm phần bù của các tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Tìm tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) là:
A. \(D = \left[ {2; + \infty } \right).\)
B. \(D = \left( {2; + \infty } \right).\)
C. \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)
D. \(D = \mathbb{R}.\)
Để hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) xác định \( \Leftrightarrow \,\,x - 2 > 0\,\, \Leftrightarrow \,\,x > 2.\)
Vậy tập xác định của hàm số là: \(D = \left( {2; + \infty } \right).\)
Chọn B.
Cho \(A = [-2;3],\;\,B = (1; + \infty )\). Xác định các tập hợp sau:
\(\;A \cap B; B \backslash A \) và \({C_\mathbb{R}}B\)
Giao của hai tập hợp là \([ - 2;3] \cap (1; + \infty ) = (1;3]\)
Hiệu của \(B \backslash A \) là \( (1; + \infty ) \backslash [ - 2;3] = (3; + \infty )\)
Phần bù của B trong \(\mathbb{R}\) là: \({C_\mathbb{R}}\;B = \mathbb{R}{\rm{\backslash }}\;(1; + \infty ) = ( - \infty ;1]\)
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?
\(A = \left\{ {x \in \mathbb{R}|\;{x^2} - 6 = 0} \right\}\);
\(B = \left\{ {x \in \mathbb{Z}|\;{x^2} - 6 = 0} \right\}\)
Ta có: \({x^2} - 6 = 0 \Leftrightarrow x = \pm \sqrt 6 \in \mathbb{R}\)
Vì \(\sqrt 6 \in \mathbb{R}\) và \( -\sqrt 6 \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\)
Nhưng \( \pm \sqrt 6 \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\)
Hay \(B = \emptyset \).
Xác định các tập hợp sau đây:
a) \((1;3) \cup [ - 2;2]\)
b) \(( - \infty ;1) \cap [0;\pi ]\)
c) \([\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\)
d) \({C_\mathbb{R}}[ - 1; + \infty )\)
Tham khảo:
a) Để xác định tập hợp \(A = (1;3) \cup [ - 2;2]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(A = [ - 2;3)\)
b) Để xác định tập hợp \(B = ( - \infty ;1) \cap [0;\pi ]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(B = [0;1)\)
c) Để xác định tập hợp \(C = [\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(C = [\frac{1}{2};1]\)
d) Để xác định tập hợp \(D = {C_\mathbb{R}}[ - 1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(D = ( - \infty ; - 1)\)
Xác định các tập hợp sau và biểu diễn chúng trên trục số.
a) \(( - 4;1] \cap [0;3)\)
b) \((0;2] \cup (- 3;1]\)
c) \(( - 2;1] \cap (1;+ \infty )\)
d) \(\mathbb{R}{\rm{\backslash }}( - \infty ;3]\)
Tham khảo:
a) Ta có:
Giao của hai tập hợp là \(( - 4;1] \cap [0;3) = \left[ {0;1} \right]\)
b) Ta có:
Hợp của hai tập hợp là \((0;2] \cup ( - 3;1] = ( - 3;2]\)
c) Ta có:
Giao của hai tập hợp là \(( - 2;1] \cap (1;+ \infty )= \emptyset\)
d) Ta có:
Phần bù của tập hợp \(( - \infty ;3]\) trong \(\mathbb{R}\) là \(\mathbb{R}{\rm{\backslash }}( - \infty ;3] = (3; + \infty )\)
Nêu số phần tử của mỗi tập hợp sau:
\(C = \{ x \in \mathbb{R}|{x^2} < 0\} ,\) \(D = \{ a\} ,E = \{ b;c;d\} ,\)\(\mathbb{N} = \left\{ {0;1;2;..} \right\}\)
\(C = \{ x \in \mathbb{R}|{x^2} < 0\} \). Tập hợp C không chứa phần tử nào vì bình phương mọi số thực đều không âm.
\(D = \{ a\} ,\) tập hợp D có duy nhất 1 phần tử là a.
\(E = \{ b;c;d\} ,\) tập hợp E có 3 phần tử.
\(\mathbb{N} = \left\{ {0;1;2;..} \right\}\): tập hợp N có vô số phần tử.