Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Xác định tập hợp
A = ( -3;5] \(\cup\) [8;10] \(\cup\) [2;8)
B = [0;2] \(\cup\) (\(-\infty;5\)] \(\cup\left(1;+\infty\right)\)
C = [ -4;7] \(\cup\) (0;10)
D = ( \(-\infty;3\) ] \(\cup\left(-5;+\infty\right)\)
E = \(\left(3;+\infty\right)\ \)\ ( \(-\infty;1\)]
F = ( 1;3] \ [0;4)
Tìm m sao cho:
a, \(A\cup B=R\) biết \(A=(-\infty;3];B=[m;+\infty)\)
b, \(C\cup D\) là một khoảng (tùy theo m xác định khoảng đó), biết \(C=\left(m;m+2\right);D=\left(-3;1\right)\)
Xác định các tập: \(A\cup B,A\cap B;A\backslash B;B\backslash A\)
a, \(A=\left\{x\in R|-3\le x\le5\right\};B==\left\{x\in R|\left|x\right|< 4\right\}\)
b, \(A=\left[1;5\right];B=\left(-3;2\right)\cup\left(3;7\right)\)
c, \(A=\left\{x\in R|\dfrac{1}{\left|x-1\right|}\ge2\right\};B=\left\{x\in R|\left|x-2\right|\le1\right\}\)
d, \(A=\left[0;2\right]\cup\left(4;6\right);B=(-5;0]\cup\left(3;5\right)\)
Tập xác định của hàm số \(y=\frac{x+2}{x^3-1}\)là
A.\(D=\left(-\infty;1\right)\cup\left(1;+\infty\right)\)
B. D = R
C.\(D=[1;+\infty)\)
Cho \(A=(-\infty;1],B=[1;+\infty);C=(0;1]\)
Kết quả nào sau đây sai
A :\(\left(A\cup B\right)/C=(-\infty;0]\cup\left(1;+\infty\right)\)
B : \(A\cap B\cap C=\left\{-1\right\}\)
C:\(A\cup B\cup C=\left(-\infty;+\infty\right)\)
D:\((-\infty;-1]\cup\left(3;+\infty\right)\)
Cho \(A=\left(-\infty;3\right),B=[-3;+\infty),C=[-3;5)\) Tìm \(C\cap\left(A\cup B\right)\)
Biểu diễn nó trên trục số nữa nha !
Tìm \(A\cap B;A\cup B\);A\B;B\A của các tập hợp sau:
a) A là tập hợp các số tự nhiên lẻ không lớn hơn 10; \(B=\left\{x\in Z|x\le6,x\ne0\right\}\).
b) A=(8;15), B=[10;2011]
c) \(A=\left\{2;+\infty\right\},B=\left\{-1;3\right\}\).
Xác định điều kiện của a,b để:
a, \(A\cap B\ne\varnothing\)với \(A=\left(a-1;a+2\right);B=(b;b+4]\)
b, \(E\subset\left(C\cup D\right)\) với \(C=\left[-1;4\right];D=R\backslash\left(-3;3\right);E=\left[a;b\right]\)