Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kinder
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:31

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

Akai Haruma
31 tháng 12 2020 lúc 14:34

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

phamthiminhanh
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Akai Haruma
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Akai Haruma
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

lê thị thu huyền
Xem chi tiết
shitbo
27 tháng 12 2018 lúc 18:10

Kho do mk se nghi

pham ba linh
Xem chi tiết
dokhanhvan_123
17 tháng 10 2020 lúc 20:40

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

Khách vãng lai đã xóa
Minh Tuấn Phạm
Xem chi tiết
T.Huyền
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2018 lúc 18:49

Áp dụng BĐT Min-cốp-xki:

\(A=\sqrt{\left(x+2\right)^2+2^2}+\sqrt{\left(1-x\right)^2+1^2}\ge\sqrt{\left(x+2+1-x\right)^2+\left(2+1\right)^2}=3\sqrt{2}\)

\(\Rightarrow A_{min}=3\sqrt{2}\) khi \(\left(x+2\right).1=2.\left(1-x\right)\Leftrightarrow x=0\)

my name
Xem chi tiết
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Diệp Song Thiên
Xem chi tiết
Nguyễn Linh Chi
15 tháng 6 2019 lúc 9:48

+) \(A=1+\sqrt{\left(x^2-2x+1\right)+7}=1+\sqrt{\left(x-1\right)^2+7}\ge1+\sqrt{0+7}=1+\sqrt{7}\)

Dấu "=" xảy ra <=> x-1=0 <=> x=1

Vậy \(minA=1+\sqrt{7}\)khi và chỉ khi x=1

+) \(B=5+\sqrt{5-6x-x^2}\)

ĐK: \(5-6x-x^2\ge0\)

\(B=5+\sqrt{5-6x-x^2}\ge5\)

Dấu "=" xảy ra  khi và chỉ khi \(5-6x-x^2=0\)tự giải tìm x !