Cho đa thức P(x) = \({x^3} + 27\). Tìm nghiệm của P(x) trong tập hợp \(\left\{ {0;3; - 3} \right\}\)
Tập nghiệm của đa thức \(f\left(x\right)=x^2+10x-56\).Tìm nghiệm của đa thức \(f\left(x\right)\)
Tập nghiệm của đa thức \(A=\left(x^2-4\right)\left(x^3+27\right)\)là ?
Nghiệm của đa thức \(f\left(x\right)\)là số a sao cho khi \(x=a\)thì \(f\left(a\right)=0\)hay \(a^2+10a-56=0\)hay \(a^2+14a-4a-46=0\)hay \(a\left(a+14\right)-4\left(a+14\right)=0\)hay \(\left(a+14\right)\left(a-4\right)=0\)hay \(\orbr{\begin{cases}a+14=0\\a-4=0\end{cases}}\)hay \(\orbr{\begin{cases}a=-14\\a=4\end{cases}}\)
Vậy nghiệm của đa thức \(f\left(x\right)\)là -14 và 4
+) Nghiệm của đa thức A là số a sao cho khi \(x=a\)thì \(A=0\)hay \(\left(a^2-4\right)\left(a^3+27\right)=0\)hay \(\orbr{\begin{cases}a^2-4=0\\a^3+27=0\end{cases}}\)hay \(\orbr{\begin{cases}a^2=4\\a^3=-27\end{cases}}\)hay \(\orbr{\begin{cases}a=\pm2\\a=-3\end{cases}}\)
Vậy nghiệm của đa thức A là -3; -2 và 2
`Answer:`
1.
`f(x)=x^2+10x-56`
`f(x)=0`
`<=>x^2+10x-56=0`
`<=>x^2+14x-4x-56=0`
`<=>x(x+14)-4(x+14)=0`
`<=>(x+14)(x-4)=0`
\(\Leftrightarrow\orbr{\begin{cases}x+14=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-14\\x=4\end{cases}}}\)
2.
Để đa thức `A` có nghiệm
`=>(x^2-4)(x^3+27)=0`
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^3+27=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^3=-27\end{cases}}\Leftrightarrow\Leftrightarrow\orbr{\begin{cases}x^2=\left(\pm2\right)^2\\x^3=\left(-3\right)^3\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-3\end{cases}}\)
56 nhaaaaaa
Cho đa thức f(x)=x3-a.x2-9.x+b
a) Tìm a và b để đa thức f(x) có nghiệm là 1 và 3.
b) Tìm tập hợp nghiệm của đa thức f(x) với a và b vừa tìm được ở trên.
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
Bài 1: a)Chứng tỏ rằng x = 1, x = 7 là hai nghiệm của đa thức g(x) = x^2 - 8x + 7
b) Trong tập {1; 2; -1; 0} số nào là nghiệm của đa thức k(x) = x^4 + 2x^3 - x^2 + x - 3
c) Cho đa thức f(x) = ax^2 + bx + c (a, b, c là hằng số). Chứng minh rằng
Nếu a-b+c = 0 thì f(x) có một nghiệm x = -1
Bài 2: Tìm nghiệm của các đa thức sau:
a) f(x) = 5x + 7 b)h(x) = x^3 + 27
c) 3(x -2) - 5(x+1) d) (2x+5)(x-3)
P(x)=5x2-2mx-3x3+4
Q(x)=-3x3+x-2+4x2
a) Tìm đa thức R(x) sao cho R(x)+Q(x)=P(x)
b)Xác định m để đa thức R(x) nhận x=2 làm một nghiệm; Tìm tập hợp nghiệm của đa thức R(x) ứng với giá trị của m vùa tìm được.
1) Tìm nghiệm của đa thức: 2x2+2x+1.
2)
a) Viết tập hợp S tất cả các nghiệm của đa thức x3-2x2-5x+6 biết rằng đa thức trên không có quá 3 nghiệm.
b) Viết tập hợp các nghiệm của đa thức x3 + 3x2 - 6x - 8.
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
cho đa thức f(x)=x^2+mx+2.Tìm tập hợp các nghiệm của f(x) ứng với giá trị m=3
Cho 2 đa thức:
f(x) = x2 - 6x + 5 và h(x) = x4 + 1/5.x2 + 2012
a. Trong tập hợp số { 5; 3; -1;0} số nào là nghiệm số nào không là nghiệm của đa thức
b. Hãy viết tập hợp S tất cả các nghiệm của f(x)
c. Hãy c/m đa thức h(x) không có nghiệm
Giúp mik với
a) ta có:
+) x = 5 => f(5) = 52 - 6.5 + 5 = 25 - 30 + 5 = 0
=> x = 5 là nghiệm của f(x)
+) x = 3 => f(3) = 32 - 6.3 + 5 = 9 - 18 + 5 = -4
=> x = 3 ko là nghiệm của f(x)
+) x = 1 =. f(1) = 12 - 6.1 + 5 = 1 - 6 + 5 = 0
=> x = 1 là nghiệm của f(x)
+) x = 0 => f(0) = 02 - 6.0 + 5 = 5
=> x = 5 ko là nghiệm của f(x)
b) Tập hợp S = {5; -1}
c) Ta có : x4 \(\ge\)0 ; 1/5x2 \(\ge\)0 ; 2012 > 0
=> x4 + 1/5x2 + 2012 > 0
=> đa thức h(x) ko có nghiệm
\(a.\)Thay lần lượt các giá trị của \(x\)trong tập hợp số \(\left\{5;3;-1;0\right\}\)vào đa thức \(f\left(x\right)\)như bn Edogawa Conan nha !
Ta thấy \(f\left(5\right)=5^2-6.5+5=0\)nên \(x=5\)là 1 ngiệm của \(f\left(x\right)\)
\(b.\)Ta có: \(f\left(x\right)=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
\(f\left(x\right)=0\Leftrightarrow\cdot x-1\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
\(c.\)Xét đa thức \(h\left(x\right)=x^4+\frac{1}{5}x^2+2012\)
Do \(x^4\ge0\)và \(\frac{1}{5}x^2\ge0\)với mọi \(x\)nên \(h\left(x\right)>0\)với mọi \(x\)
Vậy \(h\left(x\right)\ne0\)với mọi \(x\)Do đó đa thức \(h\left(x\right)\)không có nghiệm
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
Cho đa thức: f(x) = x2 - mx + 15
a) Xác định m để f(x) nhận 3 là nghiệm
b) Tìm tập hợp nghiệm S của f(x) ứng với giá trị vừa tìm được của m.
a, Để f(x) nhận 3 là nghiệm thì : \(3^2-3m+15=0\)
\(\Leftrightarrow24-3m=0\)
\(\Leftrightarrow m=8\)
b, Với m = 8 thì \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Vậy \(S=\left\{3;5\right\}\)