cho f(x)=x^99+x^88+...+x^11+x và g(x)=x^9+x^8+...+x+1.CMR: f(x) chia hết cho g(x)
CMR: f(x) chia hết cho g(x) với:
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
\(g\left(x\right)=x^9+x^8+x^7+...+x+1\)
CMR: f(x) chia hết cho g(x) với:
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
\(g\left(x\right)=x^9+x^8+x^7+...+x+1\)
cho f(x)=x99+x88+x77+...+x11+1
cho g(x)=x9+x8+...+x+1
chứng minh f(x) chia hết g(x)
Ta có:
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
\(f\left(x\right)=\left(x^{99}+x^{88}+x^{77}+...+x^{11}\right)+1\)
\(f\left(x\right)=\left[\left(x^9\right)^{11}+\left(x^8\right)^{11}+\left(x^7\right)^{11}+...+x^{11}\right]+1\)
Ta thấy:
\(\left(x^9\right)^{11}\) chia hết cho \(x^9\)
\(\left(x^8\right)^{11}\) chia hết cho \(x^8\)
\(..........\)
\(x^{11}\) chia hết cho \(x\)
\(1\) chia hết cho \(1\)
\(\Rightarrow f\left(x\right)\) chia hết cho \(g\left(x\right)\) ( Đpcm )
cho f(x) = x99 + x88 + ... + x11 + 1 va g(x)=x9 + x8 +... + x +1
Cmr f(x) chia het cho g(x)
tích mình đi
ai tích mình
mình tích lại
thanks
tích mình đi
ai tích mình
mình ko tích lại đâu
thanks
Chứng minh rằng f(x) chia hết cho g(x) với :
f(x) = x99 + x88 + x77 + ... + x11 + 1 ;
g(x) = x9 + x8 + x7 + ... + x + 1 .
Chứng minh rằng f(x) chia hết cho g(x) với :
\(f\left(x\right)=x^{99}+x^{88}+x^{77}+....+x+1\)
\(g\left(x\right)=x^9+x^8+x^7+....+x+1\)
Sửa lại đề bài nhé . \(f\left(x\right)=x^{99}+x^{88}+x^{77}+...+x^{11}+1\)
Xét hiệu \(f\left(x\right)-g\left(x\right)=x^9\left(x^{90}-1\right)+x^8\left(x^{80}-1\right)+x^7\left(x^{70}-1\right)+...+x\left(x^{10}-1\right)\)
\(=x^9\left[\left(x^{10}\right)^9-1\right]+x^8\left[\left(x^{10}\right)^8-1\right]+x^7\left[\left(x^{10}\right)^7-1\right]+...+x\left(x^{10}-1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮\left(x^{10}-1\right)\)
Mà \(x^{10}-1=\left(x-1\right)\left(x^9+x^8+x^7+...+x+1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)⋮g\left(x\right)\Rightarrow f\left(x\right)⋮g\left(x\right)\)
Chúc bạn học tốt
CMR : f(x) chia hết cho g(x) biết
f(x) = 8x^9 - 9x^8 + 1
g(x) = ( x - 1 ) ^2
giải hộ mik nha , ai lm dc mik tick cho
Chứng minh: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=x^{99}+x^{88}+x^{77}+.............+x^{11}+1\)
\(g\left(x\right)=x^9+x^8+x^7+..............+x+1\)
chung minh rang fx chia het cho gx voi fx x 99 x 88 x 77 ... x 11 1và g x x 9 x 8 ... x 1